IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3129-d563492.html
   My bibliography  Save this article

Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response

Author

Listed:
  • Jewon Oh

    (Artificial Intelligence Applied Research Institute, Kurume Institute of Technology, 2228-66 Kamitsu-machi, Kurume, Fukuoka 830-0052, Japan)

  • Daisuke Sumiyoshi

    (Department of Architecture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan)

  • Masatoshi Nishioka

    (Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sugimoto-ku, Osaka 558-8585, Japan)

  • Hyunbae Kim

    (Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan)

Abstract

The mass introduction of renewable energy is essential to reduce carbon dioxide emissions. We examined an operation method that combines the surplus energy of photovoltaic power generation using demand response (DR), which recognizes the balance between power supply and demand, with an aquifer heat storage system. In the case that predicts the occurrence of DR and performs DR storage and heat dissipation operation, the result was an operation that can suppress daytime power consumption without increasing total power consumption. Case 1-2, which performs nighttime heat storage operation for about 6 h, has become an operation that suppresses daytime power consumption by more than 60%. Furthermore, the increase in total power consumption was suppressed by combining DR heat storage operation. The long night heat storage operation did not use up the heat storage amount. Therefore, it is recommended to the heat storage operation at night as much as possible before DR occurs. In the target area of this study, the underground temperature was 19.1 °C, the room temperature during cooling was about 25 °C and groundwater could be used as the heat source. The aquifer thermal energy storage (ATES) system in this study uses three wells, and consists of a well that pumps groundwater, a heat storage well that stores heat and a well that used heat and then returns it. Care must be taken using such an operation method depending on the layer configuration.

Suggested Citation

  • Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3129-:d:563492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhai, X.Q. & Qu, M. & Yu, X. & Yang, Y. & Wang, R.Z., 2011. "A review for the applications and integrated approaches of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3133-3140, August.
    2. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    3. Zhou, Xuezhi & Gao, Qing & Chen, Xiangliang & Yan, Yuying & Spitler, Jeffrey D., 2015. "Developmental status and challenges of GWHP and ATES in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 973-985.
    4. Chiharu Misaki & Daisuke Hara & Noboru Katayama & Kiyoshi Dowaki, 2020. "Improvement of Power Capacity of Electric-Assisted Bicycles Using Fuel Cells with Metal Hydride," Energies, MDPI, vol. 13(23), pages 1-17, November.
    5. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    6. Hosein Kalantari & Seyed Ali Ghoreishi-Madiseh & Agus P. Sasmito, 2020. "Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines," Energies, MDPI, vol. 13(23), pages 1-22, December.
    7. Lukáš Janota & Tomáš Králík & Jaroslav Knápek, 2020. "Second Life Batteries Used in Energy Storage for Frequency Containment Reserve Service," Energies, MDPI, vol. 13(23), pages 1-36, December.
    8. Bloemendal, Martin & Jaxa-Rozen, Marc & Olsthoorn, Theo, 2018. "Methods for planning of ATES systems," Applied Energy, Elsevier, vol. 216(C), pages 534-557.
    9. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    10. Kranz, Stefan & Frick, Stephanie, 2013. "Efficient cooling energy supply with aquifer thermal energy storages," Applied Energy, Elsevier, vol. 109(C), pages 321-327.
    11. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    12. Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
    13. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    14. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    15. Maria Pinamonti & Alessandro Prada & Paolo Baggio, 2020. "Rule-Based Control Strategy to Increase Photovoltaic Self-Consumption of a Modulating Heat Pump Using Water Storages and Building Mass Activation," Energies, MDPI, vol. 13(23), pages 1-21, November.
    16. Paksoy, H.O. & Gürbüz, Z. & Turgut, B. & Dikici, D. & Evliya, H., 2004. "Aquifer thermal storage (ATES) for air-conditioning of a supermarket in Turkey," Renewable Energy, Elsevier, vol. 29(12), pages 1991-1996.
    17. Kun Sang Lee, 2010. "A Review on Concepts, Applications, and Models of Aquifer Thermal Energy Storage Systems," Energies, MDPI, vol. 3(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    2. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    4. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    5. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    6. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    7. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Rostampour, Vahab & Jaxa-Rozen, Marc & Bloemendal, Martin & Kwakkel, Jan & Keviczky, Tamás, 2019. "Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution," Applied Energy, Elsevier, vol. 242(C), pages 624-639.
    9. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    10. Bloemendal, Martin & Jaxa-Rozen, Marc & Olsthoorn, Theo, 2018. "Methods for planning of ATES systems," Applied Energy, Elsevier, vol. 216(C), pages 534-557.
    11. Wu, Qiang & Tu, Kun & Sun, Haizhou & Chen, Chaofan, 2019. "Investigation on the sustainability and efficiency of single-well circulation (SWC) groundwater heat pump systems," Renewable Energy, Elsevier, vol. 130(C), pages 656-666.
    12. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    13. Lu, Hongwei & Tian, Peipei & Guan, Yanlong & Yu, Sen, 2019. "Integrated suitability, vulnerability and sustainability indicators for assessing the global potential of aquifer thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 747-756.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    16. Yapparova, Alina & Matthäi, Stephan & Driesner, Thomas, 2014. "Realistic simulation of an aquifer thermal energy storage: Effects of injection temperature, well placement and groundwater flow," Energy, Elsevier, vol. 76(C), pages 1011-1018.
    17. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    18. Luo, Jin & Zhang, Qi & Liang, Changming & Wang, Haiqi & Ma, Xinning, 2023. "An overview of the recent development of the Ground Source Heat Pump (GSHP) system in China," Renewable Energy, Elsevier, vol. 210(C), pages 269-279.
    19. Zhang, Wenjie & Liu, Shan & Li, Nianping & Xie, Hui & Li, Xuanqi, 2015. "Development forecast and technology roadmap analysis of renewable energy in buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 395-402.
    20. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3129-:d:563492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.