IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6272-d452608.html
   My bibliography  Save this article

Improvement of Power Capacity of Electric-Assisted Bicycles Using Fuel Cells with Metal Hydride

Author

Listed:
  • Chiharu Misaki

    (Department of Industrial Administration, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan)

  • Daisuke Hara

    (Department of Industrial Administration, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan)

  • Noboru Katayama

    (Department of Electrical Engineering, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan)

  • Kiyoshi Dowaki

    (Department of Industrial Administration, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan)

Abstract

Hydrogen is an alternative fuel that is currently being used in fuel cell (FC) applications. This study focuses on electric-assisted bicycles (electric bicycles) powered by FCs and aims to determine the configuration of an FC system based on power demand. Metal hydrides (MHs) were used in the investigation to facilitate the containment of FC systems with improved hydrogen storage capacity. The flow performance was evaluated in our previous study; thus, here we focused on understanding the hydrogen flow characteristics from storage and the weight gain of the cartridge. Through experiments performed on existing electric-assisted bicycles, the relationship between the load weight and the power demand was evaluated. Furthermore, the power capacity of Li-ion batteries and FC systems was compared. No loss in performance was observed up to an additional payload weight of 8 kg. Combining the FC unit with an auxiliary battery offers up to 6.81× benefits with a significant weight capacity (8 kg). It is inferred that the current MH tank design does not support the required amount of hydrogen. The hydrogen flow could be supported by the exhaust heat of the FC to the MH.

Suggested Citation

  • Chiharu Misaki & Daisuke Hara & Noboru Katayama & Kiyoshi Dowaki, 2020. "Improvement of Power Capacity of Electric-Assisted Bicycles Using Fuel Cells with Metal Hydride," Energies, MDPI, vol. 13(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6272-:d:452608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2007. "Applications of proton exchange membrane fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1720-1738, October.
    2. Zhu, Wenhua H. & Zhu, Ying & Davis, Zenda & Tatarchuk, Bruce J., 2013. "Energy efficiency and capacity retention of Ni–MH batteries for storage applications," Applied Energy, Elsevier, vol. 106(C), pages 307-313.
    3. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    4. Tiziana Campisi & Giovanna Acampa & Giorgia Marino & Giovanni Tesoriere, 2020. "Cycling Master Plans in Italy: The I-BIM Feasibility Tool for Cost and Safety Assessments," Sustainability, MDPI, vol. 12(11), pages 1-20, June.
    5. Chung, C.A. & Yang, Su-Wen & Yang, Chien-Yuh & Hsu, Che-Weu & Chiu, Pai-Yuh, 2013. "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied Energy, Elsevier, vol. 103(C), pages 581-587.
    6. Sopian, Kamaruzzaman & Wan Daud, Wan Ramli, 2006. "Challenges and future developments in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 31(5), pages 719-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
    2. Tian-Hua Liu & Wen-Rui Lu & Sheng-Hsien Cheng, 2023. "Design and Implementation of Predictive Controllers for a 36-Slot 12-Pole Outer-Rotor SPMSM/SPMSG System with Energy Recovery," Energies, MDPI, vol. 16(6), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Tang & Chunsheng Wang & Yukun Hu & Zijian Liu & Feiliang Li, 2021. "Adaptive Fuzzy PID Based on Granular Function for Proton Exchange Membrane Fuel Cell Oxygen Excess Ratio Control," Energies, MDPI, vol. 14(4), pages 1-18, February.
    2. Guo, Xinru & Zhang, Houcheng & Yuan, Jinliang & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Hou, Shujin, 2019. "Performance assessment of a combined system consisting of a high-temperature polymer electrolyte membrane fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 762-770.
    3. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    4. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    5. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    6. Daud, W.R.W. & Rosli, R.E. & Majlan, E.H. & Hamid, S.A.A. & Mohamed, R. & Husaini, T., 2017. "PEM fuel cell system control: A review," Renewable Energy, Elsevier, vol. 113(C), pages 620-638.
    7. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    8. Komova, O.V. & Simagina, V.I. & Butenko, V.R. & Odegova, G.V. & Bulavchenko, O.A. & Nikolaeva, O.A. & Ozerova, A.M. & Lipatnikova, I.L. & Tayban, E.S. & Mukha, S.A. & Netskina, O.V., 2022. "Dehydrogenation of ammonia borane recrystallized by different techniques," Renewable Energy, Elsevier, vol. 184(C), pages 460-472.
    9. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    10. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    12. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    13. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    14. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    15. Cheng, Shan-Jen & Miao, Jr-Ming & Wu, Sheng-Ju, 2012. "Investigating the effects of operational factors on PEMFC performance based on CFD simulations using a three-level full-factorial design," Renewable Energy, Elsevier, vol. 39(1), pages 250-260.
    16. Ismail, M.S. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2013. "The contact resistance between gas diffusion layers and bipolar plates as they are assembled in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 52(C), pages 40-45.
    17. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    18. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    19. Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
    20. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6272-:d:452608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.