IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6612-d462227.html
   My bibliography  Save this article

A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach

Author

Listed:
  • Abdul Salam Khan

    (NUST Business School, National University of Science and Technology, Islamabad 44000, Pakistan)

  • Bashir Salah

    (Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

  • Dominik Zimon

    (Department of Management Systems and Logistics, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Muhammad Ikram

    (College of Management, Research Institute of Business Analytics and Supply Chain Management, Shenzhen University, Shenzhen 518060, China)

  • Razaullah Khan

    (Department of Mechanical Engineering Technology, University of Technology, Nowshera 24100, Pakistan)

  • Catalin I. Pruncu

    (Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
    Mechanical Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK)

Abstract

Cold-chain products are time-sensitive and perishable and pose the risk of failure if they are transported to a distant location. Thus, there is a need to analyze their quality during distribution so that the customers may receive optimal-quality products. To address this issue, this study integrates inspection strategies with the sustainable distribution system of multi-quality multiple-cold-chain products. A bi-objective model of cost and emission is proposed under the constraints of heterogeneous vehicle and time window. Furthermore, this study intends to address the following questions: which inspection strategy helps to ensure the potency of delivered products, and what is the impact of quality differentiation on the value of objective functions? A set of meta-heuristics is used for implementing the model using a rich panel of experiments. The results reveal that the quality conditions of different products impact the solutions of cost and emissions. Moreover, the conformity strategy is more viable, as it results in less cost and ensures that the quantity of delivered products meets the level of demand. Finally, the study provides implications for managers and practitioners to develop a sustainable distribution system to maintain the quality of cold-chain products.

Suggested Citation

  • Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6612-:d:462227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clyde Eiríkur Hull & Sandra Rothenberg, 2008. "Firm performance: the interactions of corporate social performance with innovation and industry differentiation," Strategic Management Journal, Wiley Blackwell, vol. 29(7), pages 781-789, July.
    2. Bozorgi, Ali & Pazour, Jennifer & Nazzal, Dima, 2014. "A new inventory model for cold items that considers costs and emissions," International Journal of Production Economics, Elsevier, vol. 155(C), pages 114-125.
    3. Songyi Wang & Fengming Tao & Yuhe Shi & Haolin Wen, 2017. "Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax," Sustainability, MDPI, vol. 9(5), pages 1-23, April.
    4. Abdul Salam Khan & Catalin Iulian Pruncu & Razaullah Khan & Khawar Naeem & Abdul Ghaffar & Pakeeza Ashraf & Shah Room, 2020. "A Trade-off Analysis of Economic and Environmental Aspects of a Disruption Based Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    5. Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016. "The effects of allowance price on energy demand under a personal carbon trading scheme," Applied Energy, Elsevier, vol. 170(C), pages 242-249.
    6. Konur, Dinçer & Campbell, James F. & Monfared, Sepideh A., 2017. "Economic and environmental considerations in a stochastic inventory control model with order splitting under different delivery schedules among suppliers," Omega, Elsevier, vol. 71(C), pages 46-65.
    7. Zvi Drezner & Carlton Scott, 2013. "Location of a distribution center for a perishable product," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 301-314, December.
    8. Miroslav Verbic, 2006. "Discussing the parameters of preservation of perishable goods in a cold logistic chain model," Applied Economics, Taylor & Francis Journals, vol. 38(2), pages 137-147.
    9. Songyi Wang & Fengming Tao & Yuhe Shi, 2018. "Optimization of Inventory Routing Problem in Refined Oil Logistics with the Perspective of Carbon Tax," Energies, MDPI, vol. 11(6), pages 1-17, June.
    10. Saif, Ahmed & Elhedhli, Samir, 2016. "Cold supply chain design with environmental considerations: A simulation-optimization approach," European Journal of Operational Research, Elsevier, vol. 251(1), pages 274-287.
    11. Lixia Li & Yu Yang & Gaoyuan Qin, 2019. "Optimization of Integrated Inventory Routing Problem for Cold Chain Logistics Considering Carbon Footprint and Carbon Regulations," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    12. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    13. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    14. Xiong Qiang & Martinson Yeboah Appiah & Kwasi Boateng & Frederick VonWolff Appiah, 2020. "Route optimization cold chain logistic distribution using greedy search method," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1115-1130, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinfeng Yan & Shakhrukh Madjidov & Habiba Halepoto & Muhammad Ikram, 2021. "Developing a Framework for the Optimization Processes of Logistics Costs: A Hurwitz Criterion Approach," SAGE Open, , vol. 11(4), pages 21582440211, October.
    2. Hafiz Haq & Petri Välisuo & Seppo Niemi, 2021. "Modelling Sustainable Industrial Symbiosis," Energies, MDPI, vol. 14(4), pages 1-16, February.
    3. Maria Kamariotou & Fotis Kitsios & Michael Madas, 2021. "E-Business Strategy for Logistics Companies: Achieving Success through Information Systems Planning," Logistics, MDPI, vol. 5(4), pages 1-9, October.
    4. Andrés Carro & Ricardo Chacartegui & Carlos Tejada & Georgios Gravanis & Muhammad Eusha & Voutetakis Spyridon & Papadopoulou Simira & Carlos Ortiz, 2021. "FMEA and Risks Assessment for Thermochemical Energy Storage Systems Based on Carbonates," Energies, MDPI, vol. 14(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Chen & Pengfei Gui & Tao Ding & Sanggyun Na & Yingtang Zhou, 2019. "Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    2. Gaoyuan Qin & Fengming Tao & Lixia Li, 2019. "A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions," IJERPH, MDPI, vol. 16(4), pages 1-17, February.
    3. Wenzhu Liao & Lin Liu & Jiazhuo Fu, 2019. "A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading," IJERPH, MDPI, vol. 16(17), pages 1-25, August.
    4. Prem Vrat & Rachita Gupta & Aman Bhatnagar & Devendra Kumar Pathak & Vijayta Fulzele, 2018. "Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 601-627, November.
    5. Lixia Li & Yu Yang & Gaoyuan Qin, 2019. "Optimization of Integrated Inventory Routing Problem for Cold Chain Logistics Considering Carbon Footprint and Carbon Regulations," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    6. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    7. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    8. Songyi Wang & Fengming Tao & Yuhe Shi, 2018. "Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint," IJERPH, MDPI, vol. 15(1), pages 1-17, January.
    9. Demir, Sercan & Aktas, Ersin & Paksoy, Turan, 2021. "Cold chain logistics: The case of Turkish Airlines vaccine distribution," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 771-798, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    10. Ling Shen & Fengming Tao & Songyi Wang, 2018. "Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    11. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    12. Zhuoqun Li & Weiwei Fei & Ermin Zhou & Yuvraj Gajpal & Xiding Chen, 2019. "The Impact of Lead Time Uncertainty on Supply Chain Performance Considering Carbon Cost," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    13. Feiyue Qiu & Guodao Zhang & Ping-Kuo Chen & Cheng Wang & Yi Pan & Xin Sheng & Dewei Kong, 2020. "A Novel Multi-Objective Model for the Cold Chain Logistics Considering Multiple Effects," Sustainability, MDPI, vol. 12(19), pages 1-28, September.
    14. Wang, Minxi & Wang, Yajie & Liu, Wei & Ma, Yu & Xiang, Longtao & Yang, Yunqi & Li, Xin, 2021. "How to achieve a win–win scenario between cost and customer satisfaction for cold chain logistics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. Eleonora Bottani & Giorgia Casella & Majcol Nobili & Letizia Tebaldi, 2022. "An Analytic Model for Estimating the Economic and Environmental Impact of Food Cold Supply Chain," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    16. Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.
    17. Wang, Min & Zhao, Lindu & Herty, Michael, 2019. "Joint replenishment and carbon trading in fresh food supply chains," European Journal of Operational Research, Elsevier, vol. 277(2), pages 561-573.
    18. Jiali Wang & Xue Peng & Yunan Du & Fulin Wang, 2022. "A tripartite evolutionary game research on information sharing of the subjects of agricultural product supply chain with a farmer cooperative as the core enterprise," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(1), pages 159-177, January.
    19. Beatrice Marchi & Simone Zanoni & Mohamad Y. Jaber, 2020. "Energy Implications of Lot Sizing Decisions in Refrigerated Warehouses," Energies, MDPI, vol. 13(7), pages 1-13, April.
    20. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6612-:d:462227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.