IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7237-d670958.html
   My bibliography  Save this article

Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability

Author

Listed:
  • Angelo Maiorino

    (Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

  • Fabio Petruzziello

    (Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

  • Ciro Aprea

    (Department of Industrial Engineering, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy)

Abstract

The cold chain is responsible for perishable products preservation and transportation, maintaining a proper temperature to slow biological decay processes. Often the efficiency of the cold chain is less than ideal, significantly increasing food waste and energy consumption. Refrigerated transport is a critical phase of the cold chain because of its negative impact on energy consumption and greenhouse gas emissions. It is estimated that around 15% of global fossil fuel energy is used in the refrigerated transport sector, so there has been a growing interest in the last decades in the optimization of these systems in order to reduce their environmental impact. Vapor compression refrigeration units, usually powered by means of a diesel engine, are the most commonly used systems in road refrigerated transport. This paper provides a review of (a) currently used systems and alternative technologies that could reduce the environmental impacts of road refrigerated transport and (b) optimization models and methods used to minimize fuel/energy consumption and greenhouse gas emissions, focusing both on reducing the thermal loads and solving the refrigerated vehicle routing problem.

Suggested Citation

  • Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7237-:d:670958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7237/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7237/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songyi Wang & Fengming Tao & Yuhe Shi & Haolin Wen, 2017. "Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax," Sustainability, MDPI, vol. 9(5), pages 1-23, April.
    2. Fang Wang & Mengchu Li & Yanling Zhang & Xianfei Liu & Dong Xie & Qiongwei Zhang & Huiling Yang, 2021. "Study on roof-mounted radiant cooling system for LNG-fueled refrigerated vehicles [Theory, technology and prospects of conventional and unconventional natural gas]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 268-274.
    3. Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).
    4. Bin Li & Jiaming Guo & Jingjing Xia & Xinyu Wei & Hao Shen & Yongfeng Cao & Huazhong Lu & Enli Lü, 2020. "Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation," Energies, MDPI, vol. 13(18), pages 1-16, September.
    5. Koronaki, I.P. & Cowan, D. & Maidment, G. & Beerman, K. & Schreurs, M. & Kaar, K. & Chaer, I. & Gontarz, G. & Christodoulaki, R.I. & Cazauran, X., 2012. "Refrigerant emissions and leakage prevention across Europe – Results from the RealSkillsEurope project," Energy, Elsevier, vol. 45(1), pages 71-80.
    6. Shi, Lingfeng & Tian, Hua & Shu, Gequn, 2020. "Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery," Applied Energy, Elsevier, vol. 264(C).
    7. Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
    8. Tan, Hongbo & Li, Yanzhong & Tuo, Hanfei & Zhou, Man & Tian, Baocong, 2010. "Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle," Energy, Elsevier, vol. 35(5), pages 1927-1935.
    9. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    10. Lixia Li & Yu Yang & Gaoyuan Qin, 2019. "Optimization of Integrated Inventory Routing Problem for Cold Chain Logistics Considering Carbon Footprint and Carbon Regulations," Sustainability, MDPI, vol. 11(17), pages 1-22, August.
    11. Meneghetti, Antonella & Dal Magro, Fabio & Romagnoli, Alessandro, 2021. "Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units," Energy, Elsevier, vol. 232(C).
    12. Gao, P. & Wang, L.W. & Wang, R.Z. & Zhang, X.F. & Li, D.P. & Liang, Z.W. & Cai, A.F., 2016. "Experimental investigation of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck," Energy, Elsevier, vol. 103(C), pages 16-26.
    13. Mohagheghi Fard, Soheil & Khajepour, Amir, 2016. "An optimal power management system for a regenerative auxiliary power system for delivery refrigerator trucks," Applied Energy, Elsevier, vol. 169(C), pages 748-756.
    14. Mota-Babiloni, Adrián & Barbosa, Jader R. & Makhnatch, Pavel & Lozano, Jaime A., 2020. "Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Maiorino & Adrián Mota-Babiloni & Fabio Petruzziello & Manuel Gesù Del Duca & Andrea Ariano & Ciro Aprea, 2022. "A Comprehensive Energy Model for an Optimal Design of a Hybrid Refrigerated Van," Energies, MDPI, vol. 15(13), pages 1-23, July.
    2. Maximilian Lösch & Markus Fallmann & Agnes Poks & Martin Kozek, 2023. "Simulation-Based Sizing of a Secondary Loop Cooling System for a Refrigerated Vehicle," Energies, MDPI, vol. 16(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Peng & Wei, Xinyu & Wang, Liwei & Zhu, Fangqi, 2022. "Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery," Energy, Elsevier, vol. 244(PB).
    2. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    3. Maiorino, Angelo & Petruzziello, Fabio & Grilletto, Arcangelo & Aprea, Ciro, 2024. "Kinetic energy harvesting for enhancing sustainability of refrigerated transportation," Applied Energy, Elsevier, vol. 364(C).
    4. Jiali Wang & Xue Peng & Yunan Du & Fulin Wang, 2022. "A tripartite evolutionary game research on information sharing of the subjects of agricultural product supply chain with a farmer cooperative as the core enterprise," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(1), pages 159-177, January.
    5. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    6. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    7. Momeni Dolatabadi, Amir & Mottahedi, Hamid Reza & Faghih Aliabadi, Mohammad Ali & Saffari Pour, Mohsen & Wen, Chuang & Akrami, Mohammad, 2024. "Evaluating and optimizing of steam ejector performance considering heterogeneous condensation using machine learning framework," Energy, Elsevier, vol. 305(C).
    8. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    9. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    10. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    11. Ling Shen & Fengming Tao & Songyi Wang, 2018. "Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    12. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    13. Yang, Zhao & Wu, Xi, 2013. "Retrofits and options for the alternatives to HCFC-22," Energy, Elsevier, vol. 59(C), pages 1-21.
    14. Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
    15. Davide Di Battista & Roberto Cipollone, 2023. "Waste Energy Recovery and Valorization in Internal Combustion Engines for Transportation," Energies, MDPI, vol. 16(8), pages 1-28, April.
    16. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    17. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    18. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    19. Zhong Zheng & Chalita Srinuan & Nuttawut Rojniruttikul, 2025. "Exploring the Impact of Digital Platform on Energy-Efficient Consumption Behavior: A Multi-Group Analysis of Air Conditioning Purchase in China Using the Extended TPB Model," Sustainability, MDPI, vol. 17(11), pages 1-25, June.
    20. Aristov, Yu. I., 2022. "Adsorption heat conversion and storage in closed systems: What have we learned over the past decade of this century?," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7237-:d:670958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.