Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.123215
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Almohammadi, K.M. & Harby, K., 2020. "Operational conditions optimization of a proposed solar-powered adsorption cooling system: Experimental, modeling, and optimization algorithm techniques," Energy, Elsevier, vol. 206(C).
- Rupa, Mahua Jahan & Pal, Animesh & Saha, Bidyut Baran, 2020. "Activated carbon-graphene nanoplatelets based green cooling system: Adsorption kinetics, heat of adsorption, and thermodynamic performance," Energy, Elsevier, vol. 193(C).
- Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).
- Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
- Bao, Huashan & Ma, Zhiwei & Roskilly, Anthony Paul, 2016. "Integrated chemisorption cycles for ultra-low grade heat recovery and thermo-electric energy storage and exploitation," Applied Energy, Elsevier, vol. 164(C), pages 228-236.
- Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Development of a novel refrigeration system for refrigerated trucks incorporating phase change material," Applied Energy, Elsevier, vol. 92(C), pages 336-342.
- Ferrucci, Franco & Stitou, Driss & Ortega, Pascal & Lucas, Franck, 2018. "Mechanical compressor-driven thermochemical storage for cooling applications in tropical insular regions. Concept and efficiency analysis," Applied Energy, Elsevier, vol. 219(C), pages 240-255.
- Palomba, Valeria & Aprile, Marcello & Motta, Mario & Vasta, Salvatore, 2017. "Study of sorption systems for application on low-emission fishing vessels," Energy, Elsevier, vol. 134(C), pages 554-565.
- Meneghetti, Antonella & Dal Magro, Fabio & Romagnoli, Alessandro, 2021. "Renewable energy penetration in food delivery: Coupling photovoltaics with transport refrigerated units," Energy, Elsevier, vol. 232(C).
- Gao, P. & Wang, L.W. & Wang, R.Z. & Zhang, X.F. & Li, D.P. & Liang, Z.W. & Cai, A.F., 2016. "Experimental investigation of a MnCl2/CaCl2-NH3 two-stage solid sorption freezing system for a refrigerated truck," Energy, Elsevier, vol. 103(C), pages 16-26.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.
- Gao, P. & Wang, L.W. & Zhu, F.Q., 2021. "Vapor-compression refrigeration system coupled with a thermochemical resorption energy storage unit for a refrigerated truck," Applied Energy, Elsevier, vol. 290(C).
- Jiang, L. & Li, S. & Wang, R.Q. & Fan, Y.B. & Zhang, X.J. & Roskilly, A.P., 2021. "Performance analysis on a hybrid compression-assisted sorption thermal battery for seasonal heat storage in severe cold region," Renewable Energy, Elsevier, vol. 180(C), pages 398-409.
- Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
- Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
- Zhang, Hong & Yan, Ting & Yu, Nan & Li, Z.H. & Pan, Q.W., 2022. "Sorption based long-term thermal energy storage with strontium chloride/ammonia," Energy, Elsevier, vol. 239(PD).
- Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
- Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
- Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
- Saufi Sulaiman, M. & Singh, B. & Mohamed, W.A.N.W., 2019. "Experimental and theoretical study of thermoelectric generator waste heat recovery model for an ultra-low temperature PEM fuel cell powered vehicle," Energy, Elsevier, vol. 179(C), pages 628-646.
- Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
- Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
- Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
- Niknam, Pouriya H. & Fisher, Robin & Ciappi, Lorenzo & Sciacovelli, Adriano, 2024. "Optimally integrated waste heat recovery through combined emerging thermal technologies: Modelling, optimization and assessment for onboard multi-energy systems," Applied Energy, Elsevier, vol. 366(C).
- Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
- Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
- Jianke Hu & Kai Teng & Yida Qiu & Yuzhu Chen & Jun Wang & Peter Lund, 2022. "Thermodynamic and Economic Performance Assessment of Double-Effect Absorption Chiller Systems with Series and Parallel Connections," Energies, MDPI, vol. 15(23), pages 1-17, December.
- Palacios, Anabel & Elena Navarro, M. & Barreneche, Camila & Ding, Yulong, 2020. "Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy," Applied Energy, Elsevier, vol. 274(C).
- Sapienza, Alessio & Gullì, Giuseppe & Calabrese, Luigi & Palomba, Valeria & Frazzica, Andrea & Brancato, Vincenza & La Rosa, Davide & Vasta, Salvatore & Freni, Angelo & Bonaccorsi, Lucio & Cacciola, G, 2016. "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers," Applied Energy, Elsevier, vol. 179(C), pages 929-938.
More about this item
Keywords
Thermochemical sorption energy storage; Compression-assisted decomposition; Exhaust waste heat recovery; Vehicle emission standards; Refrigerated vehicles;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222001189. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.