IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4765-d412691.html
   My bibliography  Save this article

Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation

Author

Listed:
  • Bin Li

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Jiaming Guo

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Jingjing Xia

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China
    Schools of Automobile, Guangdong Mechanical and Electronical College of Technology, Guangzhou 510515, China)

  • Xinyu Wei

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Hao Shen

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Yongfeng Cao

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

  • Huazhong Lu

    (Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China)

  • Enli Lü

    (College of Engineering, South China Agricultural University, Guangzhou 510642, China)

Abstract

Cold-storage containers are widely used in cold-chain logistics transportation due to their energy saving, environmental protection, and low operating cost. The uniformity of temperature distribution is significant in agricultural-product storage and transportation. This paper explored temperature distribution in the container by numerical simulation, which included ventilation velocity and the fan location. Numerical model/numerical simulation showed good agreement with experimental data in terms of temporal and spatial air temperature distribution. Results showed that the cooling rate improved as velocity increased, and temperature at 45 min was the lowest, when velocity was 16 m/s. Temperature-distribution uniformity in the compartment became worse with the increase in ventilation velocity, but its lowest temperature decreased with a velocity increase. With regard to fan energy consumption, the cooling rate of the cooling module, and temperature-field distribution in the product area, velocity of 12 m/s was best. Temperature standard deviation and nonuniformity coefficient in the container were 0.87 and 2.1, respectively, when fans were located in the top four corners of the container. Compared with before, the average temperature in the box was decreased by 0.12 °C, and the inhomogeneity coefficient decreased by more than twofold. The results of this paper provide a better understanding of temperature distribution in cold-storage containers, which helps to optimize their structure and parameters.

Suggested Citation

  • Bin Li & Jiaming Guo & Jingjing Xia & Xinyu Wei & Hao Shen & Yongfeng Cao & Huazhong Lu & Enli Lü, 2020. "Temperature Distribution in Insulated Temperature-Controlled Container by Numerical Simulation," Energies, MDPI, vol. 13(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4765-:d:412691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alzuwaid, F.A. & Ge, Y.T. & Tassou, S.A. & Sun, J., 2016. "The novel use of phase change materials in an open type refrigerated display cabinet: A theoretical investigation," Applied Energy, Elsevier, vol. 180(C), pages 76-85.
    2. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    3. Cheng, Wen-Long & Yuan, Xu-Dong, 2013. "Numerical analysis of a novel household refrigerator with shape-stabilized PCM (phase change material) heat storage condensers," Energy, Elsevier, vol. 59(C), pages 265-276.
    4. Liu, Ming & Saman, Wasim & Bruno, Frank, 2014. "Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit," Applied Energy, Elsevier, vol. 132(C), pages 226-235.
    5. Liu, Lingkun & Su, Di & Tang, Yaojie & Fang, Guiyin, 2016. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 305-317.
    6. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Development of a novel refrigeration system for refrigerated trucks incorporating phase change material," Applied Energy, Elsevier, vol. 92(C), pages 336-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adhiyaman Ilangovan & Samia Hamdane & Pedro D. Silva & Pedro D. Gaspar & Luís Pires, 2022. "Promising and Potential Applications of Phase Change Materials in the Cold Chain: A Systematic Review," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Xinghui Zhang & Qili Shi & Lingai Luo & Yilin Fan & Qian Wang & Guanguan Jia, 2021. "Research Progress on the Phase Change Materials for Cold Thermal Energy Storage," Energies, MDPI, vol. 14(24), pages 1-46, December.
    4. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    5. Wu, Jing & Tremeac, Brice & Terrier, Marie-France & Charni, Mehdi & Gagnière, Emilie & Couenne, Françoise & Hamroun, Boussad & Jallut, Christian, 2016. "Experimental investigation of the dynamic behavior of a large-scale refrigeration – PCM energy storage system. Validation of a complete model," Energy, Elsevier, vol. 116(P1), pages 32-42.
    6. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
    8. Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
    9. Ran, Fengming & Chen, Yunkang & Cong, Rongshuai & Fang, Guiyin, 2020. "Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    11. Ahn, Jae Hwan & Kim, Hoon & Jeon, Yongseok & Kwon, Ki Hyun, 2022. "Performance characteristics of mobile cooling system utilizing ice thermal energy storage with direct contact discharging for a refrigerated truck," Applied Energy, Elsevier, vol. 308(C).
    12. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Peak load shifting with energy storage and price-based control system," Energy, Elsevier, vol. 92(P3), pages 505-514.
    13. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.
    14. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    15. Zhang, Zhishan & Alva, Guruprasad & Gu, Min & Fang, Guiyin, 2018. "Experimental investigation on n–octadecane/polystyrene/expanded graphite composites as form–stable thermal energy storage materials," Energy, Elsevier, vol. 157(C), pages 625-632.
    16. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    17. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    18. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    19. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    20. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4765-:d:412691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.