IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5695-d437919.html
   My bibliography  Save this article

Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions

Author

Listed:
  • Ankur Bhattacharjee

    (Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Telangana 500078, India)

  • Rakesh K. Mohanty

    (Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Telangana 500078, India)

  • Aritra Ghosh

    (Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
    College of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Cornwall TR10 9FE, UK)

Abstract

The design of an optimized thermal management system for Li-ion batteries has challenges because of their stringent operating temperature limit and thermal runaway, which may lead to an explosion. In this paper, an optimized cooling system is proposed for kW scale Li-ion battery stack. A comparative study of the existing cooling systems; air cooling and liquid cooling respectively, has been carried out on three cell stack 70Ah LiFePO 4 battery at a high discharging rate of 2C. It has been found that the liquid cooling is more efficient than air cooling as the peak temperature of the battery stack gets reduced by 30.62% using air cooling whereas using the liquid cooling method it gets reduced by 38.40%. The performance of the liquid cooling system can further be improved if the contact area between the coolant and battery stack is increased. Therefore, in this work, an immersion-based liquid cooling system has been designed to ensure the maximum heat dissipation. The battery stack having a peak temperature of 49.76 °C at 2C discharging rate is reduced by 44.87% to 27.43 °C after using the immersion-based cooling technique. The proposed thermal management scheme is generalized and thus can be very useful for scalable Li-ion battery storage applications also.

Suggested Citation

  • Ankur Bhattacharjee & Rakesh K. Mohanty & Aritra Ghosh, 2020. "Design of an Optimized Thermal Management System for Li-Ion Batteries under Different Discharging Conditions," Energies, MDPI, vol. 13(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5695-:d:437919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eddahech, Akram & Briat, Olivier & Vinassa, Jean-Michel, 2013. "Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes," Energy, Elsevier, vol. 61(C), pages 432-439.
    2. Xiongbin Peng & Xujian Cui & Xiangping Liao & Akhil Garg, 2020. "A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack," Energies, MDPI, vol. 13(11), pages 1-20, June.
    3. Bizhong Xia & Yifan Liu & Rui Huang & Yadi Yang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "Thermal Analysis and Improvements of the Power Battery Pack with Liquid Cooling for Electric Vehicles," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    5. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    6. Ximing Cheng & Tao Li & Xusong Ruan & Zhenpo Wang, 2019. "Thermal Runaway Characteristics of a Large Format Lithium-Ion Battery Module," Energies, MDPI, vol. 12(16), pages 1-18, August.
    7. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    8. Menale, Carla & D'Annibale, Francesco & Mazzarotta, Barbara & Bubbico, Roberto, 2019. "Thermal management of lithium-ion batteries: An experimental investigation," Energy, Elsevier, vol. 182(C), pages 57-71.
    9. Jhu, Can-Yong & Wang, Yih-Wen & Wen, Chia-Yuan & Shu, Chi-Min, 2012. "Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology," Applied Energy, Elsevier, vol. 100(C), pages 127-131.
    10. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    11. Jaguemont, J. & Boulon, L. & Dubé, Y., 2016. "A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures," Applied Energy, Elsevier, vol. 164(C), pages 99-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zhang & Ningyuan Guo & Xiaoxia Sun & Jie Fan & Naifeng Yang & Junjie Song & Yuan Zou, 2021. "A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    2. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    3. Nikolaos Milas & Dimitris Mourtzis & Emmanuel Tatakis, 2020. "A Decision-Making Framework for the Smart Charging of Electric Vehicles Considering the Priorities of the Driver," Energies, MDPI, vol. 13(22), pages 1-28, November.
    4. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    5. Yuxin Zhou & Zhengkun Wang & Zongfa Xie & Yanan Wang, 2022. "Parametric Investigation on the Performance of a Battery Thermal Management System with Immersion Cooling," Energies, MDPI, vol. 15(7), pages 1-21, March.
    6. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    7. Tomasz Konewka & Joanna Bednarz & Tomasz Czuba, 2021. "Building a Competitive Advantage for Indonesia in the Development of the Regional EV Battery Chain," Energies, MDPI, vol. 14(21), pages 1-13, November.
    8. Huangjie Gong & Dan M. Ionel, 2021. "Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage," Energies, MDPI, vol. 14(18), pages 1-16, September.
    9. Lena Spitthoff & Paul R. Shearing & Odne Stokke Burheim, 2021. "Temperature, Ageing and Thermal Management of Lithium-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-30, February.
    10. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Thanikanti Sudhakar Babu & Yap Hoon & Majid A. Abdullah & Ameer Alhasan & Ammar Al-Sharaa, 2021. "Electric Buses in Malaysia: Policies, Innovations, Technologies and Life Cycle Evaluations," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    12. Aritra Ghosh & Abdelhakim Mesloub & Mabrouk Touahmia & Meriem Ajmi, 2021. "Visual Comfort Analysis of Semi-Transparent Perovskite Based Building Integrated Photovoltaic Window for Hot Desert Climate (Riyadh, Saudi Arabia)," Energies, MDPI, vol. 14(4), pages 1-13, February.
    13. Catenaro, Edoardo & Rizzo, Denise M. & Onori, Simona, 2021. "Framework for energy storage selection to design the next generation of electrified military vehicles," Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    5. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    6. Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
    7. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    8. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    9. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Tao Zhu & Haitao Min & Yuanbin Yu & Zhongmin Zhao & Tao Xu & Yang Chen & Xinyong Li & Cong Zhang, 2017. "An Optimized Energy Management Strategy for Preheating Vehicle-Mounted Li-ion Batteries at Subzero Temperatures," Energies, MDPI, vol. 10(2), pages 1-23, February.
    12. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    13. Wang, Qian & Jiang, Bin & Li, Bo & Yan, Yuying, 2016. "A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 106-128.
    14. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    16. Zhang, Yuan Ci & Briat, Olivier & Boulon, Loïc & Deletage, Jean-Yves & Martin, Cyril & Coccetti, Fabio & Vinassa, Jean-Michel, 2019. "Non-isothermal Ragone plots of Li-ion cells from datasheet and galvanostatic discharge tests," Applied Energy, Elsevier, vol. 247(C), pages 703-715.
    17. Wenzhe Li & Youhang Zhou & Haonan Zhang & Xuan Tang, 2023. "A Review on Battery Thermal Management for New Energy Vehicles," Energies, MDPI, vol. 16(13), pages 1-20, June.
    18. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    19. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    20. Xingxing Wang & Shengren Liu & Yujie Zhang & Shuaishuai Lv & Hongjun Ni & Yelin Deng & Yinnan Yuan, 2022. "A Review of the Power Battery Thermal Management System with Different Cooling, Heating and Coupling System," Energies, MDPI, vol. 15(6), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5695-:d:437919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.