IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp777-788.html
   My bibliography  Save this article

Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology

Author

Listed:
  • Ling, Ziye
  • Cao, Jiahao
  • Zhang, Wenbo
  • Zhang, Zhengguo
  • Fang, Xiaoming
  • Gao, Xuenong

Abstract

The hybrid system that integrates active cooling into phase change materials (PCMs)/expanded graphite (EG) shows great prospects for power battery thermal management. But because of the heavy weight, the system need to be optimized with a balance of the cooling capacity contributed by the active and passive cooling. This study develops an optimization method based on the response surface methodology (RSM) and a numerical heat transfer model to minimize the weight and volume of such a battery thermal management system. With the PCM thermo-physical property models incorporated, the method can optimize the PCM composition along with the active cooling structure – taking the contributions of both the active and passive cooling into account. We minimize the PCM mass of the system with this method, and analyze the effects of the PCM composition, the battery module layouts and the active cooling configuration on the thermal management performance. Then we present an optimal design for this hybrid thermal management system, which helps save the PCM mass by up to 94.1% and the volume by up to 55.6%. The thermal management performance of the design is verified with an experiment. The results show the maximum battery temperature in a 20-battery module during the 1.5C discharge is limited to 37.0 °C while the maximum temperature difference is limited to be smaller than 3 °C. Compared with the conventional liquid cooling system, the hybrid system is not only highly efficient, but lightweight, with simple structure and flexible to the batteries with arbitrary shapes.

Suggested Citation

  • Ling, Ziye & Cao, Jiahao & Zhang, Wenbo & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology," Applied Energy, Elsevier, vol. 228(C), pages 777-788.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:777-788
    DOI: 10.1016/j.apenergy.2018.06.143
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918310122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ling, Ziye & Chen, Jiajie & Fang, Xiaoming & Zhang, Zhengguo & Xu, Tao & Gao, Xuenong & Wang, Shuangfeng, 2014. "Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system," Applied Energy, Elsevier, vol. 121(C), pages 104-113.
    2. Hussain, Abid & Tso, C.Y. & Chao, Christopher Y.H., 2016. "Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite," Energy, Elsevier, vol. 115(P1), pages 209-218.
    3. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    4. Wang, Tao & Tseng, K.J. & Zhao, Jiyun & Wei, Zhongbao, 2014. "Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies," Applied Energy, Elsevier, vol. 134(C), pages 229-238.
    5. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    6. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    7. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    8. Samimi, Fereshteh & Babapoor, Aziz & Azizi, Mohammadmehdi & Karimi, Gholamreza, 2016. "Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers," Energy, Elsevier, vol. 96(C), pages 355-371.
    9. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    10. Rao, Zhonghao & Wang, Qingchao & Huang, Congliang, 2016. "Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system," Applied Energy, Elsevier, vol. 164(C), pages 659-669.
    11. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    12. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    13. Jin, L.W. & Lee, P.S. & Kong, X.X. & Fan, Y. & Chou, S.K., 2014. "Ultra-thin minichannel LCP for EV battery thermal management," Applied Energy, Elsevier, vol. 113(C), pages 1786-1794.
    14. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    15. Ekren, Orhan & Ekren, Banu Yetkin, 2008. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology," Applied Energy, Elsevier, vol. 85(11), pages 1086-1101, November.
    16. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    17. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    18. Ling, Ziye & Zhang, Zhengguo & Shi, Guoquan & Fang, Xiaoming & Wang, Lei & Gao, Xuenong & Fang, Yutang & Xu, Tao & Wang, Shuangfeng & Liu, Xiaohong, 2014. "Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 427-438.
    19. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Ziye & Lin, Wenzhu & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment," Applied Energy, Elsevier, vol. 259(C).
    2. Verma, Ashima & Saikia, Tanmoy & Saikia, Pranaynil & Rakshit, Dibakar & Ugalde-Loo, Carlos E., 2023. "Thermal performance analysis and experimental verification of lithium-ion batteries for electric vehicle applications through optimized inclined mini-channels," Applied Energy, Elsevier, vol. 335(C).
    3. Safdari, Mojtaba & Ahmadi, Rouhollah & Sadeghzadeh, Sadegh, 2022. "Numerical and experimental investigation on electric vehicles battery thermal management under New European Driving Cycle," Applied Energy, Elsevier, vol. 315(C).
    4. Chongmao Mo & Guoqing Zhang & Xiaoqing Yang & Xihong Wu & Xinxi Li, 2022. "A Battery Thermal Management System Coupling High-Stable Phase Change Material Module with Internal Liquid Cooling," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    6. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    8. Xu, Xinhai & Li, Wenzheng & Xu, Ben & Qin, Jiang, 2019. "Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 404-412.
    9. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    11. Saedpanah, Ehsan & Lahonian, Mansour & Malek Abad, Mahdi Zare, 2023. "Optimization of multi-source renewable energy air conditioning systems using a combination of transient simulation, response surface method, and 3E lifespan analysis," Energy, Elsevier, vol. 272(C).
    12. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    13. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    14. Quanyi Li & Jong-Rae Cho & Jianguang Zhai, 2021. "Optimization of Thermal Management System with Water and Phase Change Material Cooling for Li-Ion Battery Pack," Energies, MDPI, vol. 14(17), pages 1-13, August.
    15. Chao Wang & Feng Yao & Juan Shi & Liangyu Wu & Mengchen Zhang, 2018. "Visualization Study on Thermo-Hydrodynamic Behaviors of a Flat Two-Phase Thermosyphon," Energies, MDPI, vol. 11(9), pages 1-13, August.
    16. Yetik, Ozge & Karakoc, Tahir Hikmet, 2020. "A numerical study on the thermal performance of prismatic li-ion batteries for hibrid electric aircraft," Energy, Elsevier, vol. 195(C).
    17. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    18. Alkhulaifi, Yousif M. & Qasem, Naef A.A. & Zubair, Syed M., 2022. "Exergoeconomic assessment of the ejector-based battery thermal management system for electric and hybrid-electric vehicles," Energy, Elsevier, vol. 245(C).
    19. Tao, Y.B. & Liu, Y.K. & He, Y.L., 2019. "Effect of carbon nanomaterial on latent heat storage performance of carbonate salts in horizontal concentric tube," Energy, Elsevier, vol. 185(C), pages 994-1004.
    20. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    21. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    22. Nie, Binjian & Palacios, Anabel & Zou, Boyang & Liu, Jiaxu & Zhang, Tongtong & Li, Yunren, 2020. "Review on phase change materials for cold thermal energy storage applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    23. Mahesh Suresh Patil & Satyam Panchal & Namwon Kim & Moo-Yeon Lee, 2018. "Cooling Performance Characteristics of 20 Ah Lithium-Ion Pouch Cell with Cold Plates along Both Surfaces," Energies, MDPI, vol. 11(10), pages 1-19, September.
    24. Chunyu Zhao & Beile Zhang & Yuanming Zheng & Shunyuan Huang & Tongtong Yan & Xiufang Liu, 2020. "Hybrid Battery Thermal Management System in Electrical Vehicles: A Review," Energies, MDPI, vol. 13(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jiahao & Luo, Mingyun & Fang, Xiaoming & Ling, Ziye & Zhang, Zhengguo, 2020. "Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study," Energy, Elsevier, vol. 191(C).
    2. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    3. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Situ, Wenfu & Zhang, Guoqing & Li, Xinxi & Yang, Xiaoqing & Wei, Chao & Rao, Mumin & Wang, Ziyuan & Wang, Cong & Wu, Weixiong, 2017. "A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates," Energy, Elsevier, vol. 141(C), pages 613-623.
    6. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    7. Wu, Weixiong & Yang, Xiaoqing & Zhang, Guoqing & Ke, Xiufang & Wang, Ziyuan & Situ, Wenfu & Li, Xinxi & Zhang, Jiangyun, 2016. "An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack," Energy, Elsevier, vol. 113(C), pages 909-916.
    8. Kahwaji, Samer & Johnson, Michel B. & Kheirabadi, Ali C. & Groulx, Dominic & White, Mary Anne, 2018. "A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications," Energy, Elsevier, vol. 162(C), pages 1169-1182.
    9. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    11. Liu, Yuanzhi & Zhang, Jie, 2019. "Design a J-type air-based battery thermal management system through surrogate-based optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    14. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    15. Lv, Youfu & Yang, Xiaoqing & Li, Xinxi & Zhang, Guoqing & Wang, Ziyuan & Yang, Chengzhao, 2016. "Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins," Applied Energy, Elsevier, vol. 178(C), pages 376-382.
    16. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    17. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    18. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    20. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:777-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.