IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5653-d436713.html
   My bibliography  Save this article

Environmental and Economic Impact of the Antifreeze Agents in Geothermal Heat Exchangers

Author

Listed:
  • Nicola Bartolini

    (Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

  • Alessandro Casasso

    (Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

  • Carlo Bianco

    (Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

  • Rajandrea Sethi

    (Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Borehole heat exchangers (BHEs) generally employ water-antifreeze solutions to allow working fluid temperatures to fall below 0 °C. However, some local regulations have forbidden antifreeze additives (even non-toxic ones) to avoid groundwater pollution in case of pipe leakage. This paper presents a techno-economic and environmental analysis of four different fluids: propylene glycol at 25% and 33% weight concentrations, calcium chloride at 20% weight concentration (CaCl 2 20%), and pure water. Thermal loads from 36 case studies in six different climate zones are used to perform BHE sizing and compare the abovementioned fluids from the economic, operational, and environmental points of view. The economic analysis and the carbon footprint assessment are performed on a life cycle of 25 years considering the installation (BHE drilling, fluid) and operation (heat pump and ground-side circulation pump energy demand, fluid replacement) of the simulated GSHPs. Results highlight that using pure water as a heat carrier fluid is convenient for cooling-dominated buildings but, for heating-dominated buildings, this choice leads to a noticeable increase of the BHE needed length which is not compensated by the lower operational costs. On the other hand, avoiding the use of antifreeze additives generally leads to a reduction of the lifetime carbon footprint, with a few exceptions in very cold climates. CaCl 2 20% proves to be a good choice in most cases, both from the economic and the environmental points of view, as it allows a strong reduction of the installed BHE length in cold climates with a low additional cost and carbon footprint.

Suggested Citation

  • Nicola Bartolini & Alessandro Casasso & Carlo Bianco & Rajandrea Sethi, 2020. "Environmental and Economic Impact of the Antifreeze Agents in Geothermal Heat Exchangers," Energies, MDPI, vol. 13(21), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5653-:d:436713
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5653/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5653/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    2. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    3. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    4. Antonella Priarone & Federico Silenzi & Marco Fossa, 2020. "Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    5. Matteo Rivoire & Alessandro Casasso & Bruno Piga & Rajandrea Sethi, 2018. "Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps," Energies, MDPI, vol. 11(8), pages 1-23, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    2. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    3. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    4. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    5. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    6. Edoardo Ruffino & Bruno Piga & Alessandro Casasso & Rajandrea Sethi, 2022. "Heat Pumps, Wood Biomass and Fossil Fuel Solutions in the Renovation of Buildings: A Techno-Economic Analysis Applied to Piedmont Region (NW Italy)," Energies, MDPI, vol. 15(7), pages 1-25, March.
    7. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    8. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers," Applied Energy, Elsevier, vol. 146(C), pages 421-433.
    4. Alessandro Casasso & Pietro Capodaglio & Fulvio Simonetto & Rajandrea Sethi, 2019. "Environmental and Economic Benefits from the Phase-out of Residential Oil Heating: A Study from the Aosta Valley Region (Italy)," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    5. Antonio Novelli & Valentina D’Alonzo & Simon Pezzutto & Rubén Aarón Estrada Poggio & Alessandro Casasso & Pietro Zambelli, 2021. "A Spatially-Explicit Economic and Financial Assessment of Closed-Loop Ground-Source Geothermal Heat Pumps: A Case Study for the Residential Buildings of Valle d’Aosta Region," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    6. Marco Ravina & Costanza Gamberini & Alessandro Casasso & Deborah Panepinto, 2020. "Environmental and Health Impacts of Domestic Hot Water (DHW) Boilers in Urban Areas: A Case Study from Turin, NW Italy," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    7. Casasso, Alessandro & Sethi, Rajandrea, 2017. "Assessment and mapping of the shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy)," Renewable Energy, Elsevier, vol. 102(PB), pages 306-315.
    8. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    9. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    10. Casasso, Alessandro & Sethi, Rajandrea, 2016. "G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential," Energy, Elsevier, vol. 106(C), pages 765-773.
    11. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    12. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    13. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    14. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.
    15. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.
    16. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    17. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Hanan S.S. Ibrahim & Ahmed Z. Khan & Shady Attia & Yehya Serag, 2021. "Classification of Heritage Residential Building Stock and Defining Sustainable Retrofitting Scenarios in Khedivial Cairo," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    19. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    20. Baglivo, Cristina & Congedo, Paolo Maria & D'Agostino, Delia & Zacà, Ilaria, 2015. "Cost-optimal analysis and technical comparison between standard and high efficient mono-residential buildings in a warm climate," Energy, Elsevier, vol. 83(C), pages 560-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5653-:d:436713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.