IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4281-d836369.html
   My bibliography  Save this article

A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes

Author

Listed:
  • Abdelazim Abbas Ahmed

    (Department of Energy and Petroleum, Universitet I Stavanger, 4021 Stavanger, Norway)

  • Mohsen Assadi

    (Department of Energy and Petroleum, Universitet I Stavanger, 4021 Stavanger, Norway)

  • Adib Kalantar

    (Muovitech International-Group, 507 30 Brämhult, Sweden)

  • Tomasz Sliwa

    (Laboratory of Geoenergetics, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Aneta Sapińska-Śliwa

    (Laboratory of Geoenergetics, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

The reduction of CO 2 emissions has become a global concern. In this regard, the EU intends to cut CO 2 emissions by 55% by 2030 compared to those of 1990. The utilization of shallow geothermal energy (SGE) in EU countries is considered the most effective measure for decarbonizing heating and cooling. SGE systems utilize heat energy collected from the earth’s crust to provide secure, clean, and ubiquitous energy. This paper provides a literature review on the use of SGE for heating and cooling purposes. The latest advances in materials, new innovative structures, and techno-economic optimization approaches have been discussed in detail. Shallow geothermal energy’s potential is first introduced, and the innovative borehole structures to improve performance and reduce installation cost is outlined. This is followed by an extensive survey of different types of conventional and thermally enhanced collectors and grouts. Attention is mainly given to the techno-economic analysis and optimization approaches. In published case studies, the least economic break-even point against fossil fuel-based heating systems occurs within 2.5 to 17 years, depending on the local geological conditions, installation efficiency, energy prices, and subsidy. Ground source heat pumps’ cost-effectiveness could be improved through market maturity, increased efficiency, cheap electricity, and good subsidy programs.

Suggested Citation

  • Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4281-:d:836369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luka Perković & Domagoj Leko & Amalia Lekić Brettschneider & Hrvoje Mikulčić & Petar S. Varbanov, 2021. "Integration of Photovoltaic Electricity with Shallow Geothermal Systems for Residential Microgrids: Proof of Concept and Techno-Economic Analysis with RES2GEO Model," Energies, MDPI, vol. 14(7), pages 1-21, March.
    2. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    3. Chang, Keun Sun & Kim, Min Jun, 2016. "Thermal performance evaluation of vertical U-loop ground heat exchanger using in-situ thermal response test," Renewable Energy, Elsevier, vol. 87(P1), pages 585-591.
    4. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Lin Su & Jinhua Hu, 2016. "Analysis of the Effect of the CaCl 2 Mass Fraction on the Efficiency of a Heat Pump Integrated Heat-Source Tower Using an Artificial Neural Network Model," Sustainability, MDPI, vol. 8(5), pages 1-14, April.
    5. Dalla Longa, Francesco & Nogueira, Larissa P. & Limberger, Jon & Wees, Jan-Diederik van & van der Zwaan, Bob, 2020. "Scenarios for geothermal energy deployment in Europe," Energy, Elsevier, vol. 206(C).
    6. Ruiqing Du & Dandan Jiang & Yong Wang, 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid," Energies, MDPI, vol. 13(7), pages 1-18, April.
    7. Guiqiang Wang & Haiman Wang & Zhiqiang Kang & Guohui Feng, 2020. "Data-Driven Optimization for Capacity Control of Multiple Ground Source Heat Pump System in Heating Mode," Energies, MDPI, vol. 13(14), pages 1-15, July.
    8. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    9. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    10. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    11. Badenes, Borja & Sanner, Burkhard & Mateo Pla, Miguel Ángel & Cuevas, José Manuel & Bartoli, Flavia & Ciardelli, Francesco & González, Rosa M. & Ghafar, Ali Nejad & Fontana, Patrick & Lemus Zuñiga, Le, 2020. "Development of advanced materials guided by numerical simulations to improve performance and cost-efficiency of borehole heat exchangers (BHEs)," Energy, Elsevier, vol. 201(C).
    12. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    13. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    14. Sovacool, Benjamin K., 2009. "The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?," Utilities Policy, Elsevier, vol. 17(3-4), pages 288-296, September.
    15. Hakkaki-Fard, Ali & Eslami-Nejad, Parham & Aidoun, Zine & Ouzzane, Mohamed, 2015. "A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates," Energy, Elsevier, vol. 87(C), pages 49-59.
    16. Lorenzo Giacomella, 2021. "Techno-Economic Assessment (TEA) and Life Cycle Costing Analysis (LCCA): discussing methodological steps and integrability," Insights into Regional Development, VsI Entrepreneurship and Sustainability Center, vol. 3(2), pages 176-197, June.
    17. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    18. Sutman, Melis & Speranza, Gianluca & Ferrari, Alessio & Larrey-Lassalle, Pyrène & Laloui, Lyesse, 2020. "Long-term performance and life cycle assessment of energy piles in three different climatic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1177-1191.
    19. Tomislav Kurevija & Adib Kalantar & Marija Macenić & Josipa Hranić, 2019. "Investigation of Steady-State Heat Extraction Rates for Different Borehole Heat Exchanger Configurations from the Aspect of Implementation of New TurboCollector™ Pipe System Design," Energies, MDPI, vol. 12(8), pages 1-17, April.
    20. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.
    21. Lorenzo Giacomella, 2021. "Techno-Economic Assessment (TEA) and Life Cycle Costing Analysis (LCCA): discussing methodological steps and integrability," Post-Print hal-03583898, HAL.
    22. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    23. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    24. Tomasz Sliwa & Patryk Leśniak & Aneta Sapińska-Śliwa & Marc A. Rosen, 2022. "Effective Thermal Conductivity and Borehole Thermal Resistance in Selected Borehole Heat Exchangers for the Same Geology," Energies, MDPI, vol. 15(3), pages 1-29, February.
    25. Sang Mu Bae & Yujin Nam & Jong Min Choi & Kwang Ho Lee & Jae Sang Choi, 2019. "Analysis on Thermal Performance of Ground Heat Exchanger According to Design Type Based on Thermal Response Test," Energies, MDPI, vol. 12(4), pages 1-16, February.
    26. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    27. Habibi, Mohammad & Aligolzadeh, Farid & Hakkaki-Fard, Ali, 2020. "A techno-economic analysis of geothermal ejector cooling system," Energy, Elsevier, vol. 193(C).
    28. Rodolfo Perego & Sebastian Pera & Antonio Galgaro, 2019. "Techno-Economic Mapping for the Improvement of Shallow Geothermal Management in Southern Switzerland," Energies, MDPI, vol. 12(2), pages 1-24, January.
    29. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Qinghe & Ma, Kaiyuan & Wang, Wei & Pan, Jienan & Wang, Qizhi & Du, Zhigang & Wang, Zhenzhi & Yuan, Wei & Zheng, Yongxiang & Shangguan, Shuantong & Qi, Xiaofei & Pan, Miaomiao & Ji, Zhongmin, 2023. "Multifactor analysis of heat extraction performance of coaxial heat exchanger applied to hot dry rock resources exploration: A case study in matouying uplift, Tangshan, China," Energy, Elsevier, vol. 282(C).
    2. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    3. Jordi García-Céspedes & Ignasi Herms & Georgina Arnó & José Juan de Felipe, 2022. "Fifth-Generation District Heating and Cooling Networks Based on Shallow Geothermal Energy: A review and Possible Solutions for Mediterranean Europe," Energies, MDPI, vol. 16(1), pages 1-31, December.
    4. Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Anna Sowiżdżał, 2022. "Geothermal Systems—An Overview," Energies, MDPI, vol. 15(17), pages 1-5, September.
    6. Poshnath, Aravind & Rismanchi, Behzad & Rajabifard, Abbas, 2023. "Adoption of Renewable Energy Systems in common properties of multi-owned buildings: Introduction of ‘Energy Entitlement’," Energy Policy, Elsevier, vol. 174(C).
    7. Ahmed Elkhatat & Shaheen A. Al-Muhtaseb, 2023. "Combined “Renewable Energy–Thermal Energy Storage (RE–TES)” Systems: A Review," Energies, MDPI, vol. 16(11), pages 1-46, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    4. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    7. Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
    8. Alshehri, Faisal & Beck, Stephen & Ingham, Derek & Ma, Lin & Pourkashanian, Mohammed, 2021. "Sensitivity analysis of a vertical geothermal heat pump system in a hot dry climate," Renewable Energy, Elsevier, vol. 178(C), pages 785-801.
    9. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    10. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.
    11. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    12. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    13. Tomasz Sliwa & Kinga Jarosz & Marc A. Rosen & Anna Sojczyńska & Aneta Sapińska-Śliwa & Andrzej Gonet & Karolina Fąfera & Tomasz Kowalski & Martyna Ciepielowska, 2020. "Influence of Rotation Speed and Air Pressure on the Down the Hole Drilling Velocity for Borehole Heat Exchanger Installation," Energies, MDPI, vol. 13(11), pages 1-18, May.
    14. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    15. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    16. Esmaeilpour, Morteza & Gholami Korzani, Maziar & Kohl, Thomas, 2022. "Impact of thermosiphoning on long-term behavior of closed-loop deep geothermal systems for sustainable energy exploitation," Renewable Energy, Elsevier, vol. 194(C), pages 1247-1260.
    17. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.
    19. Ma, Qijie & Fan, Jianhua & Liu, Hantao, 2023. "Energy pile-based ground source heat pump system with seasonal solar energy storage," Renewable Energy, Elsevier, vol. 206(C), pages 1132-1146.
    20. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4281-:d:836369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.