IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4487-d1731015.html
   My bibliography  Save this article

A Comprehensive Review of Heat Transfer Fluids and Their Velocity Effects on Ground Heat Exchanger Efficiency in Geothermal Heat Pump Systems

Author

Listed:
  • Khaled Salhein

    (Game Above College of Engineering and Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA)

  • Abdulgani Albagul

    (Department of Control Engineering, College of Electronic Technology, Bani Walid 38645, Libya
    Quality Assurance National Project, Libyan Authority for Scientific Research, Tripoli 20315, Libya
    Department of Electrical and Computer Engineering, College of Electronic Technology, Tripoli 20299, Libya)

  • C. J. Kobus

    (Department of Mechanical Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA)

Abstract

This study reviews heat transfer fluids (HTFs) and their velocity effects on the thermal behavior of ground heat exchangers (GHEs) within geothermal heat pump (GHP) applications. It examines the classification, thermophysical properties, and operational behavior of standard working fluids, including water–glycol mixtures, as well as emerging nanofluids. Fundamental heat exchange mechanisms are discussed, with emphasis on how conductivity, viscosity, and heat capacity interact with fluid velocity to influence energy transfer performance, hydraulic resistance, and system reliability. Special attention is given to nanofluids, whose enhanced thermal behavior depends on nanoparticle type, concentration, dispersion stability, and flow conditions. The review analyzes stabilization strategies, including surfactants, functionalization, and pH control, for maintaining long-term performance. It also highlights the role of velocity optimization in balancing convective benefits with pumping energy demands, providing velocity ranges suited to different GHE configurations. Drawing from recent experimental and numerical studies, the review offers practical guidelines for integrating nanofluid formulation with engineered operating conditions to maximize energy efficiency and extend system lifespan.

Suggested Citation

  • Khaled Salhein & Abdulgani Albagul & C. J. Kobus, 2025. "A Comprehensive Review of Heat Transfer Fluids and Their Velocity Effects on Ground Heat Exchanger Efficiency in Geothermal Heat Pump Systems," Energies, MDPI, vol. 18(17), pages 1-50, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4487-:d:1731015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4487/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4487/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    2. Khaled Salhein & C. J. Kobus & Mohamed Zohdy, 2022. "Control of Heat Transfer in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 15(14), pages 1-24, July.
    3. Khaled Salhein & Javed Ashraf & Mohamed Zohdy, 2021. "Output Temperature Predictions of the Geothermal Heat Pump System Using an Improved Grey Prediction Model," Energies, MDPI, vol. 14(16), pages 1-12, August.
    4. Pavel Neuberger & Radomír Adamovský & Michaela Šeďová, 2014. "Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger," Energies, MDPI, vol. 7(2), pages 1-16, February.
    5. Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2014. "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied Energy, Elsevier, vol. 135(C), pages 548-559.
    6. Lekhal, Mohammed Cherif & Benzaama, Mohammed-Hichem & Kindinis, Andrea & Mokhtari, Abderahmane-Mejedoub & Belarbi, Rafik, 2021. "Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers," Renewable Energy, Elsevier, vol. 163(C), pages 22-40.
    7. Kong, Minsuk & Alvarado, Jorge L. & Thies, Curt & Morefield, Sean & Marsh, Charles P., 2017. "Field evaluation of microencapsulated phase change material slurry in ground source heat pump systems," Energy, Elsevier, vol. 122(C), pages 691-700.
    8. Ruiqing Du & Dandan Jiang & Yong Wang, 2020. "Numerical Investigation of the Effect of Nanoparticle Diameter and Sphericity on the Thermal Performance of Geothermal Heat Exchanger Using Nanofluid as Heat Transfer Fluid," Energies, MDPI, vol. 13(7), pages 1-18, April.
    9. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    10. Daungthongsuk, Weerapun & Wongwises, Somchai, 2007. "A critical review of convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 797-817, June.
    11. Pisarevsky, M.I. & Struchalin, P.G. & Balakin, B.V. & Kutsenko, K.V. & Maslov, Y.A., 2024. "Experimental study of nanofluid heat transfer for geothermal applications," Renewable Energy, Elsevier, vol. 221(C).
    12. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    13. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    14. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    15. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    16. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    17. Khaled Salhein & C. J. Kobus & Mohamed Zohdy & Ahmed M. Annekaa & Edrees Yahya Alhawsawi & Sabriya Alghennai Salheen, 2024. "Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 17(19), pages 1-28, October.
    18. Casasso, Alessandro & Sethi, Rajandrea, 2014. "Efficiency of closed loop geothermal heat pumps: A sensitivity analysis," Renewable Energy, Elsevier, vol. 62(C), pages 737-746.
    19. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    20. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    21. Serrano, Elena & Rus, Guillermo & García-Martínez, Javier, 2009. "Nanotechnology for sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2373-2384, December.
    22. Edrees Yahya Alhawsawi & Khaled Salhein & Mohamed A. Zohdy, 2024. "A Comprehensive Review of Existing and Pending University Campus Microgrids," Energies, MDPI, vol. 17(10), pages 1-29, May.
    23. Shuyang Tu & Xiuqin Yang & Xiang Zhou & Maohui Luo & Xu Zhang, 2019. "Experimenting and Modeling Thermal Performance of Ground Heat Exchanger Under Freezing Soil Conditions," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    24. Jun, Liu & Xu, Zhang & Jun, Gao & Jie, Yang, 2009. "Evaluation of heat exchange rate of GHE in geothermal heat pump systems," Renewable Energy, Elsevier, vol. 34(12), pages 2898-2904.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Khaled Salhein & C. J. Kobus & Mohamed Zohdy & Ahmed M. Annekaa & Edrees Yahya Alhawsawi & Sabriya Alghennai Salheen, 2024. "Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System," Energies, MDPI, vol. 17(19), pages 1-28, October.
    3. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    4. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    6. Kerme, Esa Dube & Alzahrani, Waleed Saeed & Fung, Alan S. & Leong, Wey H., 2024. "Experimental investigation of ground-source heat pump system coupled to vertical and horizontal ground loops: A case study," Renewable Energy, Elsevier, vol. 236(C).
    7. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    8. Tang, Fujiao & Nowamooz, Hossein, 2020. "Outlet temperatures of a slinky-type Horizontal Ground Heat Exchanger with the atmosphere-soil interaction," Renewable Energy, Elsevier, vol. 146(C), pages 705-718.
    9. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    10. Esa Dube Kerme & Alan S. Fung & Wey H. Leong, 2024. "Analysis of the Combined Effect of Major Influencing Parameters for Designing High-Performance Single (sBHE) and Double (dBHE) U-Tube Borehole Heat Exchangers," Energies, MDPI, vol. 17(11), pages 1-52, May.
    11. Shohei Kaneko & Akira Tomigashi & Takeshi Ishihara & Gaurav Shrestha & Mayumi Yoshioka & Youhei Uchida, 2020. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology," Energies, MDPI, vol. 13(8), pages 1-18, April.
    12. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    14. Lucija Magdic & Tea Zakula & Luka Boban, 2023. "Improved Analysis of Borehole Heat Exchanger Performance," Energies, MDPI, vol. 16(17), pages 1-18, August.
    15. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    16. Deng, Zhenpeng & Nian, Yongle & Cheng, Wen-long, 2023. "Estimation method of layered ground thermal conductivity for U-tube BHE based on the quasi-3D model," Renewable Energy, Elsevier, vol. 213(C), pages 121-133.
    17. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    18. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    19. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    20. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4487-:d:1731015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.