IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023917.html
   My bibliography  Save this article

Study on the thermo-mechanical coupling behavior of phase change backfill materials and its influence on the borehole and surrounding ground

Author

Listed:
  • Hu, Shixun
  • Li, Wei
  • Pei, Peng
  • Wang, Chen
  • Tang, Long

Abstract

To address concerns regarding structural stability in engineering applications of phase change backfill materials (PCBM), the thermo-mechanical influencing mechanism of PCBM on boreholes and the surrounding ground throughout phase-change cycles was investigated. PCBMs with an admixture of capric acid-lauric acid/expanded graphite (CA-LA/EG) and an admixture of CA-LA were prepared and tested, and multiple intermittent cycles were simulated. The results showed that the temperature gap between the borehole and surrounding ground caused a non-axisymmetric thermal stress distribution, resulting in tensile stress in the surrounding ground at shallower depths. It was found that the phase change process influenced stresses through two approaches: reducing support of PCBM to the borehole, and narrowing the thermal gap across the U-loop, borehole and surrounding ground. In comparison to concrete backfilling, the CA-LA/EG improved the heat transfer rate of U-loop by 6.42 % at most, reduced the maximal tensile stress in radial and tangential directions in surrounding ground by 27.66 % and 25.42 % respectively, amplified the stress difference in the circumference of borehole wall by four times. Under the assumed conditions, no mechanical failure would occur according to the failure criteria. The findings provide fundamental insights for stability analysis and wellbore design in preventing potential failure.

Suggested Citation

  • Hu, Shixun & Li, Wei & Pei, Peng & Wang, Chen & Tang, Long, 2025. "Study on the thermo-mechanical coupling behavior of phase change backfill materials and its influence on the borehole and surrounding ground," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023917
    DOI: 10.1016/j.renene.2024.122323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    2. Bourne-Webb, P.J. & Bodas Freitas, T.M., 2020. "Thermally-activated piles and pile groups under monotonic and cyclic thermal loading–A review," Renewable Energy, Elsevier, vol. 147(P2), pages 2572-2581.
    3. Yang, Weibo & Sun, Taofu & Zhang, Chaoyang & Wang, Feng, 2023. "Experimental and numerical investigations of thermo-mechanical behaviour of energy pile under cyclic temperature loads," Energy, Elsevier, vol. 267(C).
    4. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    5. Deng, Fengqiang & Li, Wei & Pei, Peng & Wang, Lin & Ren, Yonglin, 2024. "Study on design and calculation method of borehole heat exchangers based on seasonal patterns of groundwater," Renewable Energy, Elsevier, vol. 220(C).
    6. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    7. Yang, Weibo & Xu, Rui & Yang, Binbin & Yang, Jingjing, 2019. "Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill," Energy, Elsevier, vol. 174(C), pages 216-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaoyu & Feng, Weijian & Zhang, Nan & Zhang, Jinghong & Li, Qi & Wang, Weida & Rui, Chaofeng & Wang, Mao & Tang, Junjie & Zheng, Dechen, 2024. "Experimental study on enhanced heat transfer mechanism of U-shaped buried pipe by bio-microbial method," Renewable Energy, Elsevier, vol. 224(C).
    2. Bottarelli, Michele & Baccega, Eleonora & Cesari, Silvia & Emmi, Giuseppe, 2022. "Role of phase change materials in backfilling of flat-panels ground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 1324-1336.
    3. Brunetti, Giuseppe & Saito, Hirotaka & Saito, Takeshi & Šimůnek, Jiří, 2017. "A computationally efficient pseudo-3D model for the numerical analysis of borehole heat exchangers," Applied Energy, Elsevier, vol. 208(C), pages 1113-1127.
    4. Liao, Ziming & Huang, Guangqin & Zhuang, Chunlong & Zhang, Hongyu & Cheng, Lei & Gan, Fei, 2024. "Research on the thermal balance of a novel independent heat extraction-release double helix energy pile in long-term operation," Renewable Energy, Elsevier, vol. 236(C).
    5. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.
    6. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    7. Zhang, Changxing & Song, Wei & Liu, Yufeng & Kong, Xiangqiang & Wang, Qing, 2019. "Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate," Renewable Energy, Elsevier, vol. 136(C), pages 264-274.
    8. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    9. Adel Eswiasi & Phalguni Mukhopadhyaya, 2021. "Performance of Conventional and Innovative Single U-Tube Pipe Configuration in Vertical Ground Heat Exchanger (VGHE)," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    10. Choi, Wonjun & Kikumoto, Hideki & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference for thermal response test parameter estimation and uncertainty assessment," Applied Energy, Elsevier, vol. 209(C), pages 306-321.
    11. Huu-Quan, Do & Memarian, Amir & Izadi, Mohsen & Shehzad, Sabir Ali, 2020. "Thermal performance and effectiveness of a dual-porous domestic heat exchanger for building heating application," Renewable Energy, Elsevier, vol. 162(C), pages 1874-1889.
    12. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    13. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    14. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Xu, Zhengming & Zheng, Rui & Wang, Gaosheng & Lyu, Zehao, 2017. "Heat extraction performance simulation for various configurations of a downhole heat exchanger geothermal system," Energy, Elsevier, vol. 141(C), pages 1489-1503.
    15. Gordon, David & Bolisetti, Tirupati & Ting, David S-K. & Reitsma, Stanley, 2018. "Experimental and analytical investigation on pipe sizes for a coaxial borehole heat exchanger," Renewable Energy, Elsevier, vol. 115(C), pages 946-953.
    16. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    17. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    18. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    19. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    20. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.