IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1324-1336.html
   My bibliography  Save this article

Role of phase change materials in backfilling of flat-panels ground heat exchanger

Author

Listed:
  • Bottarelli, Michele
  • Baccega, Eleonora
  • Cesari, Silvia
  • Emmi, Giuseppe

Abstract

The behaviour of a multi-source heat pump system coupled with phase change materials (PCMs) is discussed in this manuscript, as based on selected data collected during one-year testing at the TekneHub Laboratory of the University of Ferrara (Italy), as a synergic prototype setup of two European projects: IDEAS, an H2020 project, and CLIWAX, an EFDR project. Three geothermal loops of novel shallow Flat-Panels ground heat exchangers (GHX) provide the coupling of a water-to-water heat pump with the ground, as backfilled with sand, a mixture of sand and granules with paraffins and containers filled in with hydrated salts. Furthermore, two hybrid photovoltaic panels and a dry-cooler complete the exploitable thermal sources landscape. Finally, a control unit manages all the elements for the exploitation of the different thermal sources. How the increased underground thermal energy storage is driven by PCMs has been investigated by means of specific tests, and compared with the standard case of backfilling sand. Results confirm that PCMs can compensate peak loads occurring during hard weather conditions. Good performances of the multi-source heat pump were found, with a winter coefficient of performance always higher than 5. Finally, the application of PCM in summer should be preferred in climatic zones with hot summers and cold winters, With evidence, latent heat, thermal conductivity and melting point of PCMs should be tuned accordingly to the energy requirements and the local ground thermal conditions.

Suggested Citation

  • Bottarelli, Michele & Baccega, Eleonora & Cesari, Silvia & Emmi, Giuseppe, 2022. "Role of phase change materials in backfilling of flat-panels ground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 1324-1336.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1324-1336
    DOI: 10.1016/j.renene.2022.03.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbi, Silvia & Barbieri, Francesco & Marinelli, Simona & Rimini, Bianca & Merchiori, Sebastiano & Larwa, Barbara & Bottarelli, Michele & Montorsi, Monia, 2021. "Phase change material-sand mixtures for distributed latent heat thermal energy storage: Interaction and performance analysis," Renewable Energy, Elsevier, vol. 169(C), pages 1066-1076.
    2. Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
    3. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    4. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    5. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    6. Pouloupatis, P.D. & Florides, G. & Tassou, S., 2011. "Measurements of ground temperatures in Cyprus for ground thermal applications," Renewable Energy, Elsevier, vol. 36(2), pages 804-814.
    7. Michele Bottarelli & Francisco Javier González Gallero, 2020. "Energy Analysis of a Dual-Source Heat Pump Coupled with Phase Change Materials," Energies, MDPI, vol. 13(11), pages 1-17, June.
    8. José M Corberán & Antonio Cazorla-Marín & Javier Marchante-Avellaneda & Carla Montagud, 2018. "Dual source heat pump, a high efficiency and cost-effective alternative for heating, cooling and DHW production," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(2), pages 161-176.
    9. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    10. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    11. Yang, Weibo & Xu, Rui & Yang, Binbin & Yang, Jingjing, 2019. "Experimental and numerical investigations on the thermal performance of a borehole ground heat exchanger with PCM backfill," Energy, Elsevier, vol. 174(C), pages 216-235.
    12. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelić, Marko & Batić, Marko & Krstić, Aleksandra & Bottarelli, Michele & Mainardi, Elena, 2023. "Comparative analysis of metaheuristic optimization approaches for multisource heat pump operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmi, Giuseppe & Bottarelli, Michele, 2023. "Enhancement of shallow ground heat exchanger with phase change material," Renewable Energy, Elsevier, vol. 206(C), pages 828-837.
    2. Barbi, Silvia & Barbieri, Francesco & Marinelli, Simona & Rimini, Bianca & Merchiori, Sebastiano & Larwa, Barbara & Bottarelli, Michele & Montorsi, Monia, 2021. "Phase change material-sand mixtures for distributed latent heat thermal energy storage: Interaction and performance analysis," Renewable Energy, Elsevier, vol. 169(C), pages 1066-1076.
    3. Javadi, Hossein & Urchueguía, Javier F. & Badenes, Borja & Mateo, Miguel Á. & Nejad Ghafar, Ali & Chaudhari, Ojas Arun & Zirgulis, Giedrius & Lemus, Lenin G., 2022. "Laboratory and numerical study on innovative grouting materials applicable to borehole heat exchangers (BHE) and borehole thermal energy storage (BTES) systems," Renewable Energy, Elsevier, vol. 194(C), pages 788-804.
    4. Bottarelli, M. & Bortoloni, M. & Su, Y., 2019. "On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump," Renewable Energy, Elsevier, vol. 142(C), pages 552-560.
    5. Michele Bottarelli & Francisco Javier González Gallero, 2020. "Energy Analysis of a Dual-Source Heat Pump Coupled with Phase Change Materials," Energies, MDPI, vol. 13(11), pages 1-17, June.
    6. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.
    7. Luka Boban & Dino Miše & Stjepan Herceg & Vladimir Soldo, 2021. "Application and Design Aspects of Ground Heat Exchangers," Energies, MDPI, vol. 14(8), pages 1-31, April.
    8. Lucija Magdic & Tea Zakula & Luka Boban, 2023. "Improved Analysis of Borehole Heat Exchanger Performance," Energies, MDPI, vol. 16(17), pages 1-18, August.
    9. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    10. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    12. Jia, Linrui & Lu, Lin & Chen, Jianheng & Han, Jie, 2022. "A novel radiative sky cooling-assisted ground-coupled heat exchanger system to improve thermal and energy efficiency for buildings in hot and humid regions," Applied Energy, Elsevier, vol. 322(C).
    13. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    14. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2018. "Performance comparison between optimized design of a centralized and semi-decentralized community size solar district heating system," Applied Energy, Elsevier, vol. 229(C), pages 1072-1094.
    15. Chiam, Zhonglin & Papas, Ilias & Easwaran, Arvind & Alonso, Corinne & Estibals, Bruno, 2022. "Holistic optimization of the operation of a GCHP system: A case study on the ADREAM building in Toulouse, France," Applied Energy, Elsevier, vol. 321(C).
    16. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Muhammad Asad & Vincenzo Guida & Alessandro Mauro, 2023. "Experimental and Numerical Analysis of the Efficacy of a Real Downhole Heat Exchanger," Energies, MDPI, vol. 16(19), pages 1-19, September.
    18. Zhang, Bo & Gu, Kai & Shi, Bin & Liu, Chun & Bayer, Peter & Wei, Guangqing & Gong, Xülong & Yang, Lei, 2020. "Actively heated fiber optics based thermal response test: A field demonstration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Xinbo Lei & Xiuhua Zheng & Chenyang Duan & Jianhong Ye & Kang Liu, 2019. "Three-Dimensional Numerical Simulation of Geothermal Field of Buried Pipe Group Coupled with Heat and Permeable Groundwater," Energies, MDPI, vol. 12(19), pages 1-16, September.
    20. Changlong Wang & Qiang Fu & Han Fang & Jinli Lu, 2022. "Estimation of Ground Thermal Properties of Shallow Coaxial Borehole Heat Exchanger Using an Improved Parameter Estimation Method," Sustainability, MDPI, vol. 14(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1324-1336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.