IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2837-d177143.html
   My bibliography  Save this article

Consequences of the National Energy Strategy in the Mexican Energy System: Analyzing Strategic Indicators with an Optimization Energy Model

Author

Listed:
  • Antonio Rodríguez-Martínez

    (Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Morelos, Mexico)

  • Yolanda Lechón

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Computense, 40, 28040 Madrid, Spain)

  • Helena Cabal

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Computense, 40, 28040 Madrid, Spain)

  • David Castrejón

    (Instituto Nacional de Electricidad y Energías Limpias (INEEL), Av. Reforma 113, Col. Palmira, Cuernavaca CP 62490, Morelos, Mexico)

  • Marco Polo Flores

    (Instituto Nacional de Electricidad y Energías Limpias (INEEL), Av. Reforma 113, Col. Palmira, Cuernavaca CP 62490, Morelos, Mexico)

  • R.J. Romero

    (Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca CP 62209, Morelos, Mexico)

Abstract

This paper presents an approach to the assessment of the Mexican energy system’s evolution under the climate and energy objectives set by the National Climate Change Strategy using an energy optimization model. Some strategic indicators have been chosen to analyze the performance of three integration elements: sustainability, efficiency, and energy security. Two scenarios have been defined in the medium and long-term: the business as usual scenario, with no energy or climate targets, and the National Climate Change Strategy scenario, where clean energy technologies and CO 2 emissions objectives are considered. The aim of this work is the analysis of some of those strategic indicators’ evolution using the EUROfusion Times Model. Results show that reaching the strategy targets leads to improvements in the integration elements in the medium and long term. Besides, meeting the CO 2 emission limits is achievable in terms of technologies and resources availability but at a high cost, while clean technologies targets are met with no extra costs even in the business as usual scenario.

Suggested Citation

  • Antonio Rodríguez-Martínez & Yolanda Lechón & Helena Cabal & David Castrejón & Marco Polo Flores & R.J. Romero, 2018. "Consequences of the National Energy Strategy in the Mexican Energy System: Analyzing Strategic Indicators with an Optimization Energy Model," Energies, MDPI, vol. 11(10), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2837-:d:177143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    2. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    3. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    4. Barragán-Beaud, Camila & Pizarro-Alonso, Amalia & Xylia, Maria & Syri, Sanna & Silveira, Semida, 2018. "Carbon tax or emissions trading? An analysis of economic and political feasibility of policy mechanisms for greenhouse gas emissions reduction in the Mexican power sector," Energy Policy, Elsevier, vol. 122(C), pages 287-299.
    5. Richard Loulou, 2008. "ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation," Computational Management Science, Springer, vol. 5(1), pages 41-66, February.
    6. Santoyo-Castelazo, E. & Gujba, H. & Azapagic, A., 2011. "Life cycle assessment of electricity generation in Mexico," Energy, Elsevier, vol. 36(3), pages 1488-1499.
    7. Veysey, Jason & Octaviano, Claudia & Calvin, Katherine & Martinez, Sara Herreras & Kitous, Alban & McFarland, James & van der Zwaan, Bob, 2016. "Pathways to Mexico’s climate change mitigation targets: A multi-model analysis," Energy Economics, Elsevier, vol. 56(C), pages 587-599.
    8. Islas, J. & Manzini, F. & Martínez, M., 2003. "Cost-benefit analysis of energy scenarios for the Mexican power sector," Energy, Elsevier, vol. 28(10), pages 979-992.
    9. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    2. Postic, Sebastien & Selosse, Sandrine & Maïzi, Nadia, 2017. "Energy contribution to Latin American INDCs: Analyzing sub-regional trends with a TIMES model," Energy Policy, Elsevier, vol. 101(C), pages 170-184.
    3. Barragán-Beaud, Camila & Pizarro-Alonso, Amalia & Xylia, Maria & Syri, Sanna & Silveira, Semida, 2018. "Carbon tax or emissions trading? An analysis of economic and political feasibility of policy mechanisms for greenhouse gas emissions reduction in the Mexican power sector," Energy Policy, Elsevier, vol. 122(C), pages 287-299.
    4. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    5. Murphy, Frederic & Pierru, Axel & Smeers, Yves, 2019. "Measuring the effects of price controls using mixed complementarity models," European Journal of Operational Research, Elsevier, vol. 275(2), pages 666-676.
    6. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    7. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    8. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    9. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    11. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    12. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    13. Riikka Siljander & Tommi Ekholm, 2018. "Integrated scenario modelling of energy, greenhouse gas emissions and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 783-802, June.
    14. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    15. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    16. Hickey, Conor & Deane, Paul & McInerney, Celine & Ó Gallachóir, Brian, 2019. "Is there a future for the gas network in a low carbon energy system?," Energy Policy, Elsevier, vol. 126(C), pages 480-493.
    17. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    18. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    19. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    20. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2837-:d:177143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.