IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1607-d114979.html
   My bibliography  Save this article

Power Controllable LED System with Increased Energy Efficiency Using Multi-Sensors for Plant Cultivation

Author

Listed:
  • Yong Deok Ahn

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

  • Sungwoo Bae

    (Department of Electrical Engineering, Hanyang University, Seoul 04763, Korea)

  • Suk-Ju Kang

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Korea)

Abstract

In this paper, a power-controllable light emitting diode (LED) control system is proposed for plant cultivation. The proposed LED system measures environmental data, such as the distance between the plant and LED system using an infrared sensor and the ambient illuminance based on an illuminance sensor. Then, it converts the illuminance to the photosynthetic photon flux density (PPFD) for plant cultivation. It analyzes the relationship between the data and LED PPFD, and generates an optimal pulse width modulation (PWM) signal. Therefore, it controls the LED PPFD dynamically. The proposed LED system is also implemented in hardware, which consists of red and blue LED arrays with suitable wavelengths and a micro-controller. In the experimental results, the proposed LED system preserved the target PPFD regardless of the change of the distance and ambient PPFD. Additionally, the proposed LED system maximally reduced the power consumption of a conventional system by up to 68%.

Suggested Citation

  • Yong Deok Ahn & Sungwoo Bae & Suk-Ju Kang, 2017. "Power Controllable LED System with Increased Energy Efficiency Using Multi-Sensors for Plant Cultivation," Energies, MDPI, vol. 10(10), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1607-:d:114979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisabete Correia & Helena Carvalho & Susana G. Azevedo & Kannan Govindan, 2017. "Maturity Models in Supply Chain Sustainability: A Systematic Literature Review," Sustainability, MDPI, vol. 9(1), pages 1-26, January.
    2. Uris Lantz C. Baldos & Thomas W. Hertel, 2014. "Global food security in 2050: the role of agricultural productivity and climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 554-570, October.
    3. Chiara Burattini & Benedetta Mattoni & Fabio Bisegna, 2017. "The Impact of Spectral Composition of White LEDs on Spinach ( Spinacia oleracea ) Growth and Development," Energies, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Chieh Hsu & Jing-Yuan Lin & Charlie Chung-Ping Chen, 2018. "Area-Saving and High-Efficiency RGB LED Driver with Adaptive Driving Voltage and Energy-Saving Technique," Energies, MDPI, vol. 11(6), pages 1-12, June.
    2. Ming-Chang Tsou & Ming-Tse Kuo, 2020. "Optimal Combination Design of a Light Emitting Diode Matrix Applicable to a Single-Stage Flyback Driver," Energies, MDPI, vol. 13(19), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Mai Hisham Haroun Montasser & Islam El-Nakeeb, 2017. "Investigating Solid Waste Supply Chain: A Proposed Framework forAchieving the Environmental Sustainability Case study Alexandria,Egypt," International Journal of Business and Economic Affairs (IJBEA), Sana N. Maswadeh, vol. 2(3), pages 165-172.
    3. Pavan Manocha & Jagjit Singh Srai, 2020. "Exploring Environmental Supply Chain Innovation in M&A," Sustainability, MDPI, vol. 12(23), pages 1-15, December.
    4. Lopez Barrera, Emiliano, 2018. "Hunger and Obesity: the “double burden” of malnutrition in a SIMPLE framework," Conference papers 330180, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Keith Fuglie & Srabashi Ray & Uris Lantz C. Baldos & Thomas W. Hertel, 2022. "The R&D cost of climate mitigation in agriculture," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1955-1974, December.
    6. Hans-Peter Weikard, 2016. "Phosphorus recycling and food security in the long run: a conceptual modelling approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(2), pages 405-414, April.
    7. Thuzar Linn & Broos Maenhout, 2019. "The impact of environmental uncertainty on the performance of the rice supply chain in the Ayeyarwaddy Region, Myanmar," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 7(1), pages 1-29, December.
    8. Jesko Schulte & Sophie Isaksson Hallstedt, 2018. "Self-Assessment Method for Sustainability Implementation in Product Innovation," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    9. Piera Centobelli & Roberto Cerchione & Emilio Esposito, 2018. "Environmental Sustainability and Energy-Efficient Supply Chain Management: A Review of Research Trends and Proposed Guidelines," Energies, MDPI, vol. 11(2), pages 1-36, January.
    10. Sanzidur Rahman & Asif Reza Anik & Jaba Rani Sarker, 2022. "Climate, Environment and Socio-Economic Drivers of Global Agricultural Productivity Growth," Land, MDPI, vol. 11(4), pages 1-17, April.
    11. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    12. Aswin Rivai, 2022. "The monetary policy impact on agricultural growth and food prices," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 11(9), pages 158-165, December.
    13. Kan, Iddo & Reznik, Ami & Kaminski, Jonathan & Kimhi, Ayal, 2023. "The impacts of climate change on cropland allocation, crop production, output prices and social welfare in Israel: A structural econometric framework," Food Policy, Elsevier, vol. 115(C).
    14. Sasenarine Tomby & Jing Zhang, 2019. "Vulnerability assessment of Guyanese sugar to floods," Climatic Change, Springer, vol. 154(1), pages 179-193, May.
    15. Agnieszka A. Tubis & Sylwia Werbińska-Wojciechowska, 2021. "Risk Management Maturity Model for Logistic Processes," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    16. Baldos, Uris Lantz & Thomas Hertel, 2014. "Bursting the Bubble: A Long Run Perspective on Crop Commodity Prices," GTAP Working Papers 4574, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    17. Raine Isaksson & Max Rosvall & Maximilian Espuny & Thais Vieira Nunhes & Otávio José de Oliveira, 2022. "How Is Building Sustainability Understood?—A Study of Research Papers and Sustainability Reports," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    18. Ke Ma & Lichuan Wang & Yan Chen, 2017. "A Resource Sharing Mechanism for Sustainable Production in the Garment Industry," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    19. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    20. Andrea Benedek & Tomasz Rokicki & András Szeberényi, 2023. "Bibliometric Evaluation of Energy Efficiency in Agriculture," Energies, MDPI, vol. 16(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1607-:d:114979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.