IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5209-d424304.html
   My bibliography  Save this article

Optimal Combination Design of a Light Emitting Diode Matrix Applicable to a Single-Stage Flyback Driver

Author

Listed:
  • Ming-Chang Tsou

    (Leadtrend Technology Corporation, No.1, Taiyuan 2nd St., Zhubei City 302, Hsinchu County, Taiwan)

  • Ming-Tse Kuo

    (Department of Electrical Engineering, National Taiwan University of Science and Technology, No.43, Section 4, Keelung Road, Da’an District, Taipei City 106, Taiwan)

Abstract

The present study analyzed light emitting diodes (LEDs) as an output load and used a Taylor series to describe the characteristic curve based on the exponential characteristic of voltage and current. A prototype circuit of a flyback LED driver system was established to verify whether the theory is consistent with actual results. This study focused on the exponential relationship of LED voltage and current. Conventional simulations usually used linear models to present LED loads. However, the linear model resulted in considerable error between simulation and actual characteristics. Therefore, this study employed a Taylor series to describe the nonlinear characteristic of an LED load. Through precise calculations with Mathcad computation software, the error was effectively reduced. Moreover, the process clarified the influence of temperature on LEDs, which benefited the characteristic analysis of the entire system. Finally, a realized circuit of 120 W flyback LED drivers was established for conducting theory verification, including theoretic analysis and evaluation of the system design process of the flyback converter. The circuit simulation software SIMPLIS was used to demonstrate the system model, which enabled quick understanding of the system framework established in this study. Regarding LEDs, a commercially available aluminum luminaire was used as the output load. The measured results of the actual circuit and the simulation results were remarkably consistent. For the same system at the same temperature, the error between the simulation and actual results was less than 3%, which proved the reliability of the Taylor series simulation.

Suggested Citation

  • Ming-Chang Tsou & Ming-Tse Kuo, 2020. "Optimal Combination Design of a Light Emitting Diode Matrix Applicable to a Single-Stage Flyback Driver," Energies, MDPI, vol. 13(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5209-:d:424304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yitao Liu & Shan Yin & Xuewei Pan & Huaizhi Wang & Guibin Wang & Jianchun Peng, 2017. "Effects of Nonlinearity in Input Filter on the Dynamic Behavior of an Interleaved Boost PFC Converter," Energies, MDPI, vol. 10(10), pages 1-14, October.
    2. Yong Deok Ahn & Sungwoo Bae & Suk-Ju Kang, 2017. "Power Controllable LED System with Increased Energy Efficiency Using Multi-Sensors for Plant Cultivation," Energies, MDPI, vol. 10(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng-Yu Tseng & Jun-Hao Fan, 2022. "Zeta/Flyback Hybrid Converter for Solar Power Applications," Sustainability, MDPI, vol. 14(5), pages 1-28, March.
    2. Claudio Adragna & Giovanni Gritti & Santi Agatino Rizzo & Giovanni Susinni, 2021. "Distortion Due to the Zero Current Detection Circuit in High Power Factor Quasi-Resonant Flybacks," Energies, MDPI, vol. 14(2), pages 1-26, January.
    3. Michal Frivaldsky, 2021. "Advanced Perspectives for Modeling Simulation and Control of Power Electronic Systems," Energies, MDPI, vol. 14(23), pages 1-2, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Scirè & Gianpaolo Vitale & Marco Ventimiglia & Giuseppe Lullo, 2021. "Non-Linear Inductors Characterization in Real Operating Conditions for Power Density Optimization in SMPS," Energies, MDPI, vol. 14(13), pages 1-19, June.
    2. Yi-Chieh Hsu & Jing-Yuan Lin & Charlie Chung-Ping Chen, 2018. "Area-Saving and High-Efficiency RGB LED Driver with Adaptive Driving Voltage and Energy-Saving Technique," Energies, MDPI, vol. 11(6), pages 1-12, June.
    3. Miran Rodič & Miro Milanovič & Mitja Truntič, 2018. "Digital Control of an Interleaving Operated Buck-Boost Synchronous Converter Used in a Low-Cost Testing System for an Automotive Powertrain," Energies, MDPI, vol. 11(9), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5209-:d:424304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.