IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v5y2017i4p38-d115667.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Stochastic Dominance and Omega Ratio: Measures to Examine Market Efficiency, Arbitrage Opportunity, and Anomaly

Author

Listed:
  • Xu Guo

    (School of Statistics, Beijing Normal University, Beijing 100875, China)

  • Xuejun Jiang

    (Department of Mathematics, South University of Science and Technology of China, Shenzhen 518055, China)

  • Wing-Keung Wong

    (Department of Finance and Big Data Research Center, Asia University, Taichung 41354, Taiwan
    Department of Economics and Finance, Hang Seng Management College, Hong Kong, China
    Department of Economics, Lingnan University, Hong Kong, China
    Department of Finance, College of Management, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan)

Abstract

Both stochastic dominance and Omegaratio can be used to examine whether the market is efficient, whether there is any arbitrage opportunity in the market and whether there is any anomaly in the market. In this paper, we first study the relationship between stochastic dominance and the Omega ratio. We find that second-order stochastic dominance (SD) and/or second-order risk-seeking SD (RSD) alone for any two prospects is not sufficient to imply Omega ratio dominance insofar that the Omega ratio of one asset is always greater than that of the other one. We extend the theory of risk measures by proving that the preference of second-order SD implies the preference of the corresponding Omega ratios only when the return threshold is less than the mean of the higher return asset. On the other hand, the preference of the second-order RSD implies the preference of the corresponding Omega ratios only when the return threshold is larger than the mean of the smaller return asset. Nonetheless, first-order SD does imply Omega ratio dominance. Thereafter, we apply the theory developed in this paper to examine the relationship between property size and property investment in the Hong Kong real estate market. We conclude that the Hong Kong real estate market is not efficient and there are expected arbitrage opportunities and anomalies in the Hong Kong real estate market. Our findings are useful for investors and policy makers in real estate.

Suggested Citation

  • Xu Guo & Xuejun Jiang & Wing-Keung Wong, 2017. "Stochastic Dominance and Omega Ratio: Measures to Examine Market Efficiency, Arbitrage Opportunity, and Anomaly," Economies, MDPI, vol. 5(4), pages 1-16, October.
  • Handle: RePEc:gam:jecomi:v:5:y:2017:i:4:p:38-:d:115667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/5/4/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/5/4/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Aumann & Roberto Serrano, 2008. "An Economic Index of Riskiness," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 810-836, October.
    2. Anne Haila, 2000. "Real Estate in Global Cities: Singapore and Hong Kong as Property States," Urban Studies, Urban Studies Journal Limited, vol. 37(12), pages 2241-2256, November.
    3. Harry Markowitz, 1952. "The Utility of Wealth," Journal of Political Economy, University of Chicago Press, vol. 60(2), pages 151-151.
    4. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    5. Jarrow, Robert, 1986. "The Relationship between Arbitrage and First Order Stochastic Dominance," Journal of Finance, American Finance Association, vol. 41(4), pages 915-921, September.
    6. Marjorie Flavin & Shinobu Nakagawa, 2008. "A Model of Housing in the Presence of Adjustment Costs: A Structural Interpretation of Habit Persistence," American Economic Review, American Economic Association, vol. 98(1), pages 474-495, March.
    7. Zhuo Qiao & Wing-Keung Wong, 2015. "Which is a better investment choice in the Hong Kong residential property market: a big or small property?," Applied Economics, Taylor & Francis Journals, vol. 47(16), pages 1670-1685, April.
    8. Chun-Kei Tsang & Wing-Keung Wong & Ira Horowitz, 2016. "Arbitrage opportunities, efficiency, and the role of risk preferences in the Hong Kong property market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 33(4), pages 735-754, October.
    9. Niu, Cuizhen & Wong, Wing-Keung & Zhu, Lixing, 2016. "First Stochastic Dominance and Risk Measurement," MPRA Paper 75027, University Library of Munich, Germany.
    10. Egozcue, Martín & García, Luis Fuentes & Wong, Wing-Keung & Zitikis, Ricardas, 2011. "Do investors like to diversify? A study of Markowitz preferences," European Journal of Operational Research, Elsevier, vol. 215(1), pages 188-193, November.
    11. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    12. Jarl G. Kallberg & Crocker H. Liu & D. Wylie Greig, 1996. "The Role of Real Estate in the Portfolio Allocation Process," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 24(3), pages 359-377, September.
    13. Ghent, Andra C. & Owyang, Michael T., 2010. "Is housing the business cycle? Evidence from US cities," Journal of Urban Economics, Elsevier, vol. 67(3), pages 336-351, May.
    14. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    15. Broll, Udo & Egozcue, Martín & Wong, Wing-Keung & Zitikis, Ričardas, 2010. "Prospect theory and hedging risks," Dresden Discussion Paper Series in Economics 05/10, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    16. Larsen, Glen A, Jr & Resnick, Bruce G, 1999. "A Performance Comparison between Cross-Sectional Stochastic Dominance and Traditional Event Study Methodologies," Review of Quantitative Finance and Accounting, Springer, vol. 12(2), pages 103-112, March.
    17. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    18. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    19. Xu Guo & Andreas Wagener & Wing-Keung Wong & Lixing Zhu, 2018. "The two-moment decision model with additive risks," Risk Management, Palgrave Macmillan, vol. 20(1), pages 77-94, February.
    20. Guastaroba, G. & Mansini, R. & Ogryczak, W. & Speranza, M.G., 2016. "Linear programming models based on Omega ratio for the Enhanced Index Tracking Problem," European Journal of Operational Research, Elsevier, vol. 251(3), pages 938-956.
    21. Wong, Wing-Keung & Li, Chi-Kwong, 1999. "A note on convex stochastic dominance," Economics Letters, Elsevier, vol. 62(3), pages 293-300, March.
    22. Kapsos, Michalis & Christofides, Nicos & Rustem, Berç, 2014. "Worst-case robust Omega ratio," European Journal of Operational Research, Elsevier, vol. 234(2), pages 499-507.
    23. Meyer, Jack, 1977. "Second Degree Stochastic Dominance with Respect to a Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 477-487, June.
    24. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    25. James P. Quirk & Rubin Saposnik, 1962. "Admissibility and Measurable Utility Functions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(2), pages 140-146.
    26. Balder, Sven & Schweizer, Nikolaus, 2017. "Risk aversion vs. the Omega ratio: Consistency results," Finance Research Letters, Elsevier, vol. 21(C), pages 78-84.
    27. Richard H. Thaler & Eric J. Johnson, 1990. "Gambling with the House Money and Trying to Break Even: The Effects of Prior Outcomes on Risky Choice," Management Science, INFORMS, vol. 36(6), pages 643-660, June.
    28. John S. Hammond, III, 1974. "Simplifying the Choice between Uncertain Prospects Where Preference is Nonlinear," Management Science, INFORMS, vol. 20(7), pages 1047-1072, March.
    29. Hoang, Thi-Hong-Van & Wong, Wing-Keung & Zhu, Zhenzhen, 2015. "Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange," Economic Modelling, Elsevier, vol. 50(C), pages 200-211.
    30. Guo, Xu & Wong, Wing-Keung, 2016. "Multivariate Stochastic Dominance for Risk Averters and Risk Seekers," MPRA Paper 70637, University Library of Munich, Germany.
    31. Susanne Cannon & Norman G. Miller & Gurupdesh S. Pandher, 2006. "Risk and Return in the U.S. Housing Market: A Cross-Sectional Asset-Pricing Approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 34(4), pages 519-552, December.
    32. Homm, Ulrich & Pigorsch, Christian, 2012. "Beyond the Sharpe ratio: An application of the Aumann–Serrano index to performance measurement," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2274-2284.
    33. Bernard, Victor L & Seyhun, H Nejat, 1997. "Does Post-Earnings-Announcement Drift in Stock Prices Reflect a Market Inefficiency? A Stochastic Dominance Approach," Review of Quantitative Finance and Accounting, Springer, vol. 9(1), pages 17-34, July.
    34. Henderson, J. Vernon & Ioannides, Yannis M., 1987. "Owner occupancy: Investment vs consumption demand," Journal of Urban Economics, Elsevier, vol. 21(2), pages 228-241, March.
    35. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56(4), pages 279-279.
    36. Cuizhen Niu & Wing-Keung Wong & Qunfang Xu, 2017. "Kappa ratios and (higher-order) stochastic dominance," Risk Management, Palgrave Macmillan, vol. 19(3), pages 245-253, August.
    37. Haim Falk & Haim Levy, 1989. "Market Reaction to Quarterly Earnings' Announcements: A Stochastic Dominance Based Test of Market Efficiency," Management Science, INFORMS, vol. 35(4), pages 425-446, April.
    38. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihui Lv & Amanda M. Y. Chu & Wing Keung Wong & Thomas C. Chiang, 2021. "The maximum-return-and-minimum-volatility effect: evidence from choosing risky and riskless assets to form a portfolio," Risk Management, Palgrave Macmillan, vol. 23(1), pages 97-122, June.
    2. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    4. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    5. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    6. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2016. "Management Science, Economics and Finance: A Connection," Tinbergen Institute Discussion Papers 16-040/III, Tinbergen Institute.
    7. Chun-Kei Tsang & Wing-Keung Wong & Ira Horowitz, 2016. "Arbitrage opportunities, efficiency, and the role of risk preferences in the Hong Kong property market," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 33(4), pages 735-754, October.
    8. Raymond H. Chan & Ephraim Clark & Xu Guo & Wing-Keung Wong, 2020. "New development on the third-order stochastic dominance for risk-averse and risk-seeking investors with application in risk management," Risk Management, Palgrave Macmillan, vol. 22(2), pages 108-132, June.
    9. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    10. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    11. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    12. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2016. "Almost stochastic dominance for risk averters and risk seeker," Finance Research Letters, Elsevier, vol. 19(C), pages 15-21.
    13. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    14. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    15. Ephraim Clark & Zhuo Qiao & Wing-Keung Wong, 2016. "Theories Of Risk: Testing Investor Behavior On The Taiwan Stock And Stock Index Futures Markets," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 907-924, April.
    16. Kim-Hung Pho & Thi Diem-Chinh Ho & Tuan-Kiet Tran & Wing-Keung Wong, 2019. "Moment Generating Function, Expectation And Variance Of Ubiquitous Distributions With Applications In Decision Sciences: A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 65-150, June.
    17. Tsang, Chun-Kei & Wong, Wing-Keung & Horowitz, Ira, 2016. "A stochastic-dominance approach to determining the optimal home-size purchase: The case of Hong Kong," MPRA Paper 69175, University Library of Munich, Germany.
    18. Chan, Raymond H. & Clark, Ephraim & Wong, Wing-Keung, 2016. "On the Third Order Stochastic Dominance for Risk-Averse and Risk-Seeking Investors with Analysis of their Traditional and Internet Stocks," MPRA Paper 75002, University Library of Munich, Germany.
    19. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Nguyen Huu Hau & Tran Trung Tinh & Hoa Anh Tuong & Wing-Keung Wong, 2020. "Review of Matrix Theory with Applications in Education and Decision Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 28-69, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:5:y:2017:i:4:p:38-:d:115667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.