IDEAS home Printed from https://ideas.repec.org/a/gam/jecomi/v4y2016i3p19-d77190.html
   My bibliography  Save this article

Socio-Economic Implications of Drought in the Agricultural Sector and the State Economy

Author

Listed:
  • Jadwiga R. Ziolkowska

    (Department of Geography and Environmental Sustainability, The University of Oklahoma, Norman, OK 73019, USA)

Abstract

In 2011, the most severe drought in Texas history caused $7.62 billion in losses in the agricultural sector alone. This paper analyzes ripple effects of the 2011 drought in Texas agriculture on the entire state economy retrospectively in an effort to foster discussion on targeted mitigation measures in the long term. By using an Input-Output and social accounting matrix model, direct effects on livestock, cotton, sorghum, wheat, corn, hay, and timber production, as well as indirect effects on other related sectors, and finally induced effects from changing consumers behavior have been estimated. According to the results, the 2011 drought caused economic losses of $16.9 billion in the entire Texas economy and increased the unemployment by around 166,895 people. The agricultural sector alone lost around 106,000 jobs. The cotton farming experienced 91% of revenue losses (as compared to 2010), while the livestock production lost 32% in revenue. The decreased production yields and limited market supply directly influence market prices for those products, which might create additional spillover effects on export and import quantities. The presented analysis can be helpful for designing policies to launch mitigation programs for drought events in the future.

Suggested Citation

  • Jadwiga R. Ziolkowska, 2016. "Socio-Economic Implications of Drought in the Agricultural Sector and the State Economy," Economies, MDPI, vol. 4(3), pages 1-11, September.
  • Handle: RePEc:gam:jecomi:v:4:y:2016:i:3:p:19-:d:77190
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7099/4/3/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7099/4/3/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gohar, Abdelaziz A. & Cashman, Adrian, 2016. "A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare," Agricultural Systems, Elsevier, vol. 147(C), pages 51-64.
    2. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    3. Liang, Sai & Qi, Zhengling & Qu, Shen & Zhu, Ji & Chiu, Anthony S.F. & Jia, Xiaoping & Xu, Ming, 2016. "Scaling of global input–output networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 311-319.
    4. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    5. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
    6. Faye Duchin & Stephen H. Levine, 2011. "Sectors May Use Multiple Technologies Simultaneously: The Rectangular Choice-Of-Technology Model With Binding Factor Constraints," Economic Systems Research, Taylor & Francis Journals, vol. 23(3), pages 281-302, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doughty, Russell & Xiao, Xiangming & Wu, Xiaocui & Zhang, Yao & Bajgain, Rajen & Zhou, Yuting & Qin, Yuanwei & Zou, Zhenhua & McCarthy, Heather & Friedman, Jack & Wagle, Pradeep & Basara, Jeff & Stein, 2018. "Responses of gross primary production of grasslands and croplands under drought, pluvial, and irrigation conditions during 2010–2016, Oklahoma, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 47-59.
    2. Esteban Thomasz & Ismael Pérez-Franco & Agustín García-García, 2020. "The Economic Impact of Climate Risk on Extensive Livestock: The Case of Lamb Production in Extremadura, Spain," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    3. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    4. Gift Nxumalo & Bashar Bashir & Karam Alsafadi & Hussein Bachir & Endre Harsányi & Sana Arshad & Safwan Mohammed, 2022. "Meteorological Drought Variability and Its Impact on Wheat Yields across South Africa," IJERPH, MDPI, vol. 19(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    2. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    3. Wentao Lu & Guixiang Zhang, 2023. "Green development efficiency of urban agglomerations in a developing country: evidence from Beijing-Tianjin-Hebei in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6939-6962, July.
    4. Shang, Hua & Jiang, Li & Pan, Xianyou & Pan, Xiongfeng, 2022. "Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 114(C).
    5. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    6. Matheus Koengkan & José Alberto Fuinhas & Emad Kazemzadeh & Fariba Osmani & Nooshin Karimi Alavijeh, 2022. "Measuring the economic efficiency performance in Latin American and Caribbean countries: An empirical evidence from stochastic production frontier and data envelopment analysis," International Economics, CEPII research center, issue 169, pages 43-54.
    7. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    8. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    9. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    10. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    11. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    12. Rezgar FEIZI & Sahar AMIDI & Thais NUNEZ-ROCHA & Isabelle RABAUD, 2022. "Carbon Tax and Emissions Transfer: a Spatial Analysis," LEO Working Papers / DR LEO 2965, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    13. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    14. Wu, Ge & Baležentis, Tomas & Sun, Chuanwang & Xu, Shuhua, 2019. "Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the Total Factor Productivity change decomposition," Energy Policy, Elsevier, vol. 129(C), pages 1227-1239.
    15. Soroush Kiani Ghalehsard & Javad Shahraki & Ahmad Akbari & Ali Sardar Shahraki, 2021. "Assessment of the impacts of climate change and variability on water resources and use, food security, and economic welfare in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14666-14682, October.
    16. Abdelaziz A Gohar & Adrian Cashman & Abdelaziz A Gohar, 2017. "Climate Change Impacts on Water Scarcity and Food Security in Tropical Environments: The Case of Caribbean Region," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 3(2), pages 57-59, - July.
    17. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
    18. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    19. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    20. Faye Duchin, 2017. "Resources for Sustainable Economic Development: A Framework for Evaluating Infrastructure System Alternatives," Sustainability, MDPI, vol. 9(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecomi:v:4:y:2016:i:3:p:19-:d:77190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.