IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v4y2022i4p55-907d919745.html
   My bibliography  Save this article

Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies

Author

Listed:
  • Dimitrios Mendrinos

    (Centre for Renewable Energy Sources and Saving—CRES, 19009 Pikermi, Greece)

  • Spyridon Karytsas

    (Centre for Renewable Energy Sources and Saving—CRES, 19009 Pikermi, Greece)

  • Olympia Polyzou

    (Centre for Renewable Energy Sources and Saving—CRES, 19009 Pikermi, Greece)

  • Constantine Karytsas

    (Centre for Renewable Energy Sources and Saving—CRES, 19009 Pikermi, Greece)

  • Åsta Dyrnes Nordø

    (Norwegian Research Centre—NORCE, 5838 Bergen, Norway)

  • Kirsti Midttømme

    (Norwegian Research Centre—NORCE, 5838 Bergen, Norway)

  • Danny Otto

    (Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany)

  • Matthias Gross

    (Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany)

  • Marit Sprenkeling

    (Netherlands Organisation for Applied Scientific Research—TNO, 2595 DA The Hague, The Netherlands)

  • Ruben Peuchen

    (Netherlands Organisation for Applied Scientific Research—TNO, 2595 DA The Hague, The Netherlands)

  • Tara Geerdink

    (Netherlands Organisation for Applied Scientific Research—TNO, 2595 DA The Hague, The Netherlands)

  • Hanneke Puts

    (Netherlands Organisation for Applied Scientific Research—TNO, 2595 DA The Hague, The Netherlands)

Abstract

The DigiMon project aims to develop and demonstrate an affordable, flexible, societally embedded, and smart digital monitoring early warning system for any subsurface CO 2 storage field. The societal embeddedness level (SEL) assessment is a novel methodology which provides insight into the societal requirements for technological innovation to be deployed. The SEL assessment framework was applied in four case studies, concerning CCS development in Norway, the Netherlands, Greece, and Germany. The resulting societal embeddedness levels of CCS, on a scale of 1–4, were SEL 3 in Norway with considerable progress towards level 4, followed by the Netherlands with SEL 2 with several initiatives towards offshore demonstration projects, and then by Greece and Germany with SEL 1. The outcomes of the SEL assessments show which societal requirements have been met in current CCS developments and which ones should be improved for CCS deployment. They also show that monitoring currently is a regulatory requirement as part of permitting procedures, while it may alleviate community concerns on safety, provided that it has certain attributes. The insights from the four national case studies are further used in the DigiMon project to develop the innovative societal embedded DigiMon monitoring system.

Suggested Citation

  • Dimitrios Mendrinos & Spyridon Karytsas & Olympia Polyzou & Constantine Karytsas & Åsta Dyrnes Nordø & Kirsti Midttømme & Danny Otto & Matthias Gross & Marit Sprenkeling & Ruben Peuchen & Tara Geerdin, 2022. "Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies," Clean Technol., MDPI, vol. 4(4), pages 1-15, September.
  • Handle: RePEc:gam:jcltec:v:4:y:2022:i:4:p:55-907:d:919745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/4/4/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/4/4/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    2. Marit Sprenkeling & Tara Geerdink & Adriaan Slob & Amber Geurts, 2022. "Bridging Social and Technical Sciences: Introduction of the Societal Embeddedness Level," Energies, MDPI, vol. 15(17), pages 1-16, August.
    3. Kobos, Peter H. & Malczynski, Leonard A. & Walker, La Tonya N. & Borns, David J. & Klise, Geoffrey T., 2018. "Timing is everything: A technology transition framework for regulatory and market readiness levels," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 211-225.
    4. Watson, Jim & Kern, Florian & Markusson, Nils, 2014. "Resolving or managing uncertainties for carbon capture and storage: Lessons from historical analogues," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 192-204.
    5. Florin Paun, 2011. ""Demand Readiness Level" (DRL), a new tool to hybridize Market Pull and Technology Push approaches," Post-Print halshs-00565048, HAL.
    6. Florin Paun, 2011. ""Demand Readiness Level" (DRL), a new tool to hybridize Market Pull and Technology Push approaches. Introspective analysis of the new trends in Technology Transfer practices," Working Papers halshs-00628978, HAL.
    7. Torp, Tore A & Gale, John, 2004. "Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects," Energy, Elsevier, vol. 29(9), pages 1361-1369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ellen Nordgård-Hansen & Ingvild Firman Fjellså & Tamás Medgyes & María Guðmundsdóttir & Baldur Pétursson & Maciej Miecznik & Leszek Pająk & Oto Halás & Einar Leknes & Kirsti Midttømme, 2023. "Differences in Direct Geothermal Energy Utilization for Heating and Cooling in Central and Northern European Countries," Energies, MDPI, vol. 16(18), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Otto & Marit Sprenkeling & Ruben Peuchen & Åsta Dyrnes Nordø & Dimitrios Mendrinos & Spyridon Karytsas & Siri Veland & Olympia Polyzou & Martha Lien & Yngve Heggelund & Matthias Gross & Pim Piek, 2022. "On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO 2 Storage Monitoring Systems," Energies, MDPI, vol. 15(15), pages 1-22, August.
    2. Zeynep Clulow & Michele Ferguson & Peta Ashworth & David Reiner, 2021. "Political ideology and public views of the energy transition in Australia and the UK," Working Papers EPRG2106, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    5. Christopher J. Blackburn & Mallory E. Flowers & Daniel C. Matisoff & Juan Moreno‐Cruz, 2020. "Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1100-1132, September.
    6. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    7. Nemet, Gregory F. & Zipperer, Vera & Kraus, Martina, 2018. "The valley of death, the technology pork barrel, and public support for large demonstration projects," Energy Policy, Elsevier, vol. 119(C), pages 154-167.
    8. Benedict Probst & Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre, 2021. "Global trends in the invention and diffusion of climate change mitigation technologies," Nature Energy, Nature, vol. 6(11), pages 1077-1086, November.
    9. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    10. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    11. Sergio E Morales & William E Holben, 2013. "Functional Response of a Near-Surface Soil Microbial Community to a Simulated Underground CO2 Storage Leak," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    12. Watson, Jim & Gross, Rob & Ketsopoulou, Ioanna & Winskel, Mark, 2015. "The impact of uncertainties on the UK's medium-term climate change targets," Energy Policy, Elsevier, vol. 87(C), pages 685-695.
    13. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    14. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    15. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    16. Qing Wang & Hanbing Xiong & Tingzhen Ming, 2022. "Methods of Large-Scale Capture and Removal of Atmospheric Greenhouse Gases," Energies, MDPI, vol. 15(18), pages 1-5, September.
    17. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    18. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    19. Pavel Tsiglianu & Natalia Romasheva & Artem Nenko, 2023. "Conceptual Management Framework for Oil and Gas Engineering Project Implementation," Resources, MDPI, vol. 12(6), pages 1-27, May.
    20. Themann, Dörte & Brunnengräber, Achim, 2021. "Using socio-technical analogues as an additional experience horizon for nuclear waste management A comparison of wind farms, fracking, carbon capture and storage (CCS) with a deep-geological nuclear w," Utilities Policy, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:4:y:2022:i:4:p:55-907:d:919745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.