IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5007-d614811.html
   My bibliography  Save this article

On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment

Author

Listed:
  • Stian Rørheim

    (Department of Geoscience and Petroleum, Norwegian University of Science and Technology (NTNU), NO-7034 Trondheim, Norway)

  • Mohammad Hossain Bhuiyan

    (SINTEF Industry, NO-7465 Trondheim, Norway)

  • Andreas Bauer

    (Aker BP, NO-7011 Trondheim, Norway)

  • Pierre Rolf Cerasi

    (SINTEF Industry, NO-7465 Trondheim, Norway)

Abstract

Carbon capture and storage (CCS) by geological sequestration comprises a permeable formation (reservoir) for CO 2 storage topped by an impermeable formation (caprock). Time-lapse (4D) seismic is used to map CO 2 movement in the subsurface: CO 2 migration into the caprock might change its properties and thus impact its integrity. Simultaneous forced-oscillation and pulse-transmission measurements are combined to quantify Young’s modulus and Poisson’s ratio as well as P- and S-wave velocity changes in the absence and in the presence of CO 2 at constant seismic and ultrasonic frequencies. This combination is the laboratory proxy to 4D seismic because rock properties are monitored over time. It also improves the understanding of frequency-dependent (dispersive) properties needed for comparing in-situ and laboratory measurements. To verify our method, Draupne Shale is monitored during three consecutive fluid exposure phases. This shale appears to be resilient to CO 2 exposure as its integrity is neither compromised by notable Young’s modulus and Poisson’s ratio nor P- and S-wave velocity changes. No significant changes in Young’s modulus and Poisson’s ratio seismic dispersion are observed. This absence of notable changes in rock properties is attributed to Draupne being a calcite-poor shale resilient to acidic CO 2 -bearing brine that may be a suitable candidate for CCS.

Suggested Citation

  • Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5007-:d:614811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5007/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5007/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
    2. N. Kampman & A. Busch & P. Bertier & J. Snippe & S. Hangx & V. Pipich & Z. Di & G. Rother & J. F. Harrington & J. P. Evans & A. Maskell & H. J. Chapman & M. J. Bickle, 2016. "Observational evidence confirms modelling of the long-term integrity of CO2-reservoir caprocks," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
    3. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    4. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    5. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    6. Torp, Tore A & Gale, John, 2004. "Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects," Energy, Elsevier, vol. 29(9), pages 1361-1369.
    7. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
    2. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    3. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    4. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    5. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    6. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    7. Vafaie, Atefeh & Cama, Jordi & Soler, Josep M. & Kivi, Iman R. & Vilarrasa, Victor, 2023. "Chemo-hydro-mechanical effects of CO2 injection on reservoir and seal rocks: A review on laboratory experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
    9. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    10. Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
    11. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
    12. Ozotta, Ogochukwu & Kolawole, Oladoyin & Lamine Malki, Mohamed & Ore, Tobi & Gentzis, Thomas & Fowler, Hallie & Liu, Kouqi & Ostadhassan, Mehdi, 2022. "Nano- to macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2," Applied Energy, Elsevier, vol. 326(C).
    13. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    14. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    15. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    16. Cheng, P. & Zhang, C.P. & Ma, Z.Y. & Zhou, J.P. & Zhang, D.C. & Liu, X.F. & Chen, H. & Ranjith, P.G., 2022. "Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests," Energy, Elsevier, vol. 242(C).
    17. Yugang Cheng & Mengru Zeng & Zhaohui Lu & Xidong Du & Hong Yin & Liu Yang, 2020. "Effects of Supercritical CO 2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO 2 Sequestration," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    18. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    19. Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
    20. Zhu, Hongjian & Ju, Yiwen & Yang, Manping & Huang, Cheng & Feng, Hongye & Qiao, Peng & Ma, Chao & Su, Xin & Lu, Yanjun & Shi, Erxiu & Han, Jinxuan, 2022. "Grain-scale petrographic evidence for distinguishing detrital and authigenic quartz in shale: How much of a role do they play for reservoir property and mechanical characteristic?," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5007-:d:614811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.