IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v326y2022ics0306261922013083.html
   My bibliography  Save this article

Nano- to macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2

Author

Listed:
  • Ozotta, Ogochukwu
  • Kolawole, Oladoyin
  • Lamine Malki, Mohamed
  • Ore, Tobi
  • Gentzis, Thomas
  • Fowler, Hallie
  • Liu, Kouqi
  • Ostadhassan, Mehdi

Abstract

Considering the importance of carbon neutrality, UCCUS which is underground carbon capture, utilization, and storage has been widely adopted to mitigate climate change. Studies are being conducted to improve this process, however, there is still a lack of knowledge on the multiscale physicochanical alterations that the storage reservoirs may endure due to the long-term exposure to supercritical CO2 (ScCO2). These changes happen from nano- to macro-scale in mineralogy and pore structures which will impact mechanical and petrophysical attributes of the host rock. Since unconventional shale reservoirs have become the target of CO2-EOR and CO2 storage, it is imperative to understand the long-term impact of these alterations due to ScCO2 exposure. This study coupled experimental and theoretical modeling to investigate continuous nano- to macro-scale changes in mechanical, mineralogical, and structural alterations in the Middle Bakken by exposing samples to ScCO2 for 3, 8, 16, 30 and 60 days. Qualitative analysis of electron micrographs pre and post exposure confirmed certain minerals have evolved while image processing showed a quantitative change in pore structures. Moreover, nanomechanical changes pre and post exposure were inspected via nanoindentation method. Furthermore, we assessed how mineral content was impacted during the exposure using X-ray diffraction analysis. Next, we adopted two rock physics models based on mechanical and mineralogical observations to upscale mechanical properties to the macro scale. Analyses of the results indicate that long-term ScCO2 exposure induces mineral dissolution, precipitation and the development of fractures in the host reservoir. Further, CO2 induced alterations can lead to long-term macro-scale weakening causing a loss in mechanical integrity of the Middle Bakken by decreasing its elastic modulus (DS model = –33 %, MT model = -30 %) and increasing its Poisson’s ratio (DS model = +38 %, MT model = +32 %). Overall, this study can provide new insights for a better design and implementation of UCCUS projects in shale reservoirs, most especially in the Middle Bakken and other similar formations, where a lack of understanding of these variations and project planning could lead to potential CO2 leakages and environmental hazards.

Suggested Citation

  • Ozotta, Ogochukwu & Kolawole, Oladoyin & Lamine Malki, Mohamed & Ore, Tobi & Gentzis, Thomas & Fowler, Hallie & Liu, Kouqi & Ostadhassan, Mehdi, 2022. "Nano- to macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2," Applied Energy, Elsevier, vol. 326(C).
  • Handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013083
    DOI: 10.1016/j.apenergy.2022.120051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Lingyun Kong & Mehdi Ostadhassan & Siavash Zamiran & Bo Liu & Chunxiao Li & Gennaro G. Marino, 2019. "Geomechanical Upscaling Methods: Comparison and Verification via 3D Printing," Energies, MDPI, vol. 12(3), pages 1-20, January.
    3. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desmond Batsa Dorhjie & Elena Mukhina & Anton Kasyanenko & Alexey Cheremisin, 2023. "Tight and Shale Oil Exploration: A Review of the Global Experience and a Case of West Siberia," Energies, MDPI, vol. 16(18), pages 1-28, September.
    2. Wei, Jianguang & Yang, Erlong & Li, Jiangtao & Liang, Shuang & Zhou, Xiaofeng, 2023. "Nuclear magnetic resonance study on the evolution of oil water distribution in multistage pore networks of shale oil reservoirs," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    2. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    3. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    4. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    5. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    6. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    7. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    8. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
    9. Cheng, P. & Zhang, C.P. & Ma, Z.Y. & Zhou, J.P. & Zhang, D.C. & Liu, X.F. & Chen, H. & Ranjith, P.G., 2022. "Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests," Energy, Elsevier, vol. 242(C).
    10. Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
    11. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    12. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    13. He, Qianyang & Li, Delu & Sun, Qiang & Wei, Baowei & Wang, Shaofei, 2022. "Main controlling factors of marine shale compressive strength: A case study on the cambrian Niutitang Formation in Dabashan Mountain," Energy, Elsevier, vol. 260(C).
    14. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    15. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    16. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    17. Mingyue Jia & Wenhui Huang & Yuan Li, 2023. "Quantitative Characterization of Pore Structure Parameters in Coal Based on Image Processing and SEM Technology," Energies, MDPI, vol. 16(4), pages 1-19, February.
    18. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    19. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    20. Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:326:y:2022:i:c:s0306261922013083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.