IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1361-1369.html
   My bibliography  Save this article

Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects

Author

Listed:
  • Torp, Tore A
  • Gale, John

Abstract

At the Sleipner gas field in the North Sea, CO2 has been stripped from the produced natural gas and injected into a sand layer called the Utsira formation. Injection started in October 1996, to date nearly 8 million tonnes of CO2 have been injected without any significant operational problems observed in the capture plant or in the injection well. The Sleipner project is the first commercial application of CO2 storage in deep saline aquifers in the world. To monitor the injected CO2, a separate project called the saline aquifer CO2 storage (SACS) project was established in 1998.

Suggested Citation

  • Torp, Tore A & Gale, John, 2004. "Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects," Energy, Elsevier, vol. 29(9), pages 1361-1369.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1361-1369
    DOI: 10.1016/j.energy.2004.03.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001537
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Mendrinos & Spyridon Karytsas & Olympia Polyzou & Constantine Karytsas & Åsta Dyrnes Nordø & Kirsti Midttømme & Danny Otto & Matthias Gross & Marit Sprenkeling & Ruben Peuchen & Tara Geerdin, 2022. "Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies," Clean Technol., MDPI, vol. 4(4), pages 1-15, September.
    2. Singh, A.K. & Goerke, U.-J. & Kolditz, O., 2011. "Numerical simulation of non-isothermal compositional gas flow: Application to carbon dioxide injection into gas reservoirs," Energy, Elsevier, vol. 36(5), pages 3446-3458.
    3. Pham, V.T.H. & Riis, F. & Gjeldvik, I.T. & Halland, E.K. & Tappel, I.M. & Aagaard, P., 2013. "Assessment of CO2 injection into the south Utsira-Skade aquifer, the North Sea, Norway," Energy, Elsevier, vol. 55(C), pages 529-540.
    4. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    5. Ghorbani, Afshin & Rahimpour, Hamid Reza & Ghasemi, Younes & Zoughi, Somayeh & Rahimpour, Mohammad Reza, 2014. "A Review of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 73-100.
    6. Sergio E Morales & William E Holben, 2013. "Functional Response of a Near-Surface Soil Microbial Community to a Simulated Underground CO2 Storage Leak," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    7. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    8. Emad A. Al†Khdheeawi & Stephanie Vialle & Ahmed Barifcani & Mohammad Sarmadivaleh & Yihuai Zhang & Stefan Iglauer, 2018. "Impact of salinity on CO2 containment security in highly heterogeneous reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 93-105, February.
    9. Alirza Orujov & Kipp Coddington & Saman A. Aryana, 2023. "A Review of CCUS in the Context of Foams, Regulatory Frameworks and Monitoring," Energies, MDPI, vol. 16(7), pages 1-41, April.
    10. Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
    11. van Alphen, Klaas & van Ruijven, Jochem & Kasa, Sjur & Hekkert, Marko & Turkenburg, Wim, 2009. "The performance of the Norwegian carbon dioxide, capture and storage innovation system," Energy Policy, Elsevier, vol. 37(1), pages 43-55, January.
    12. Sikandar Khan & Yehia Abel Khulief & Abdullatif Al-Shuhail, 2019. "Mitigating climate change via CO2 sequestration into Biyadh reservoir: geomechanical modeling and caprock integrity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(1), pages 23-52, January.
    13. Lu Shi & Zhijiao Zeng & Bing Bai & Xiaochun Li, 2018. "Effect of the intermediate principal stress on the evolution of mudstone permeability under true triaxial compression," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 37-50, February.
    14. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    16. Masoud Ahmadinia & Seyed M. Shariatipour, 2020. "Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1077-1097, October.
    17. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    18. Eigbe, Patrick A. & Ajayi, Olatunbosun O. & Olakoyejo, Olabode T. & Fadipe, Opeyemi L. & Efe, Steven & Adelaja, Adekunle O., 2023. "A general review of CO2 sequestration in underground geological formations and assessment of depleted hydrocarbon reservoirs in the Niger Delta," Applied Energy, Elsevier, vol. 350(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1361-1369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.