IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1574-d929196.html
   My bibliography  Save this article

Are the Agricultural Subsidies Based on the Farm Size Justified? Empirical Evidence from the Czech Republic

Author

Listed:
  • Eliška Svobodová

    (Department of Regional and Business Economics, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic)

  • Radka Redlichová

    (Department of Regional and Business Economics, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic)

  • Gabriela Chmelíková

    (Department of Regional and Business Economics, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic)

  • Ivana Blažková

    (Department of Regional and Business Economics, Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00 Brno, Czech Republic)

Abstract

The paper aims to explore the relationship between size, production orientation, and performance in the Czech agriculture and to answer the research question as to what extent a farm size and a product orientation of farm do matter in relation to its productivity and profitability. We use data from FADN CZ database (Farm Accountancy Data Network—Czech Republic) of conventional farms oriented on fieldcrops production, milk production, other grazing livestock and mixed production, and we cover the period from 2015–2020. Pursuing an econometric approach (ANOVA and multivariate regression analysis), we test productivity and profitability differentiation among the different-sized and different production orientation companies. Finally, subsidies and their effects on different groups of companies are assessed. The findings from testing our empirical model indicate that very large farms have statistically significantly higher total factor productivity than large farms, which perform better than medium and small farms. Average productivity of large-size farms compared to small and medium farms is 1.4 times higher in terms of total factor productivity, more than two times higher in terms of agricultural land productivity, and 3.2 times higher in terms of labour productivity. The findings show that farms with field production statistically significantly outperform farms with orientation on other grazing livestock and mixed production. Different levels of productivity are translated into differentiation in the profitability. The highest profitability ratios are achieved by large farms followed by very large, medium, and small ones. The assessment of ratio of subsidies to agricultural production shows that small farms received 2.3 times higher agricultural subsidies per unit of agricultural production compared to very large farms.

Suggested Citation

  • Eliška Svobodová & Radka Redlichová & Gabriela Chmelíková & Ivana Blažková, 2022. "Are the Agricultural Subsidies Based on the Farm Size Justified? Empirical Evidence from the Czech Republic," Agriculture, MDPI, vol. 12(10), pages 1-18, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1574-:d:929196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tasso Adamopoulos & Diego Restuccia, 2014. "The Size Distribution of Farms and International Productivity Differences," American Economic Review, American Economic Association, vol. 104(6), pages 1667-1697, June.
    2. Štefan Bojnec & Imre Fertő, 2021. "The growth of farms: a Hungarian-Slovenian comparison," Post-Communist Economies, Taylor & Francis Journals, vol. 33(1), pages 79-93, January.
    3. Andrew D. Foster & Mark R. Rosenzweig, 2022. "Are There Too Many Farms in the World? Labor Market Transaction Costs, Machine Capacities, and Optimal Farm Size," Journal of Political Economy, University of Chicago Press, vol. 130(3), pages 636-680.
    4. Barrett, Christopher B. & Bellemare, Marc F. & Hou, Janet Y., 2010. "Reconsidering Conventional Explanations of the Inverse Productivity-Size Relationship," World Development, Elsevier, vol. 38(1), pages 88-97, January.
    5. Van Zyl, Johan & Miller, Bill R. & Parker, Andrew, 1996. "Agrarian structure in Poland : the myth of large-farm superiority," Policy Research Working Paper Series 1596, The World Bank.
    6. Raushan Bokusheva & Lukáš Čechura, 2017. "Evaluating dynamics, sources and drivers of productivity growth at the farm level," OECD Food, Agriculture and Fisheries Papers 106, OECD Publishing.
    7. Alvarez, Antonio & Arias, Carlos, 2004. "Technical efficiency and farm size: a conditional analysis," Agricultural Economics, Blackwell, vol. 30(3), pages 241-250, May.
    8. Bevis, Leah EM. & Barrett, Christopher B., 2020. "Close to the edge: High productivity at plot peripheries and the inverse size-productivity relationship," Journal of Development Economics, Elsevier, vol. 143(C).
    9. Justin Kagin & J. Edward Taylor & Antonio Yúnez-Naude, 2016. "Inverse Productivity or Inverse Efficiency? Evidence from Mexico," Journal of Development Studies, Taylor & Francis Journals, vol. 52(3), pages 396-411, March.
    10. Antonio Arbelo & Marta Arbelo-Pérez & Pilar Pérez-Gómez, 2022. "Are SMEs less efficient? A Bayesian approach to addressing heterogeneity across firms," Small Business Economics, Springer, vol. 58(4), pages 1915-1929, April.
    11. Martina Novotná & Ivana Faltová Leitmanová & Jiří Alina & Tomáš Volek, 2020. "Capital Intensity and Labour Productivity in Waste Companies," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    12. Laure Latruffe, 2010. "Competitiveness, Productivity and Efficiency in the Agricultural and Agri-Food Sectors," OECD Food, Agriculture and Fisheries Papers 30, OECD Publishing.
    13. Gorton, Matthew & Davidova, Sophia, 2004. "Farm productivity and efficiency in the CEE applicant countries: a synthesis of results," Agricultural Economics, Blackwell, vol. 30(1), pages 1-16, January.
    14. Štefan Bojnec & Imre Fertő, 2013. "Farm income sources, farm size and farm technical efficiency in Slovenia," Post-Communist Economies, Taylor & Francis Journals, vol. 25(3), pages 343-356, September.
    15. Heath Henderson, 2015. "Considering Technical and Allocative Efficiency in the Inverse Farm Size–Productivity Relationship," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(2), pages 442-469, June.
    16. Daniel Ayalew Ali & Klaus Deininger, 2015. "Is There a Farm Size–Productivity Relationship in African Agriculture? Evidence from Rwanda," Land Economics, University of Wisconsin Press, vol. 91(2), pages 317-343.
    17. Martina Novotná & Tomáš Volek, 2016. "The Significance of Farm Size in the Evaluation of Labour Productivity in Agriculture," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(1), pages 333-340.
    18. Ondřej Dvouletý & Ivana Blažková & Oto Potluka, 2021. "Estimating the effects of public subsidies on the performance of supported enterprises across firm sizes [Implementing Matching Estimators for Average Treatment Effects in Stata]," Research Evaluation, Oxford University Press, vol. 30(3), pages 290-313.
    19. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helfand, Steven M. & Taylor, Matthew P.H., 2021. "The inverse relationship between farm size and productivity: Refocusing the debate," Food Policy, Elsevier, vol. 99(C).
    2. Aragón, Fernando M. & Restuccia, Diego & Rud, Juan Pablo, 2022. "Are small farms really more productive than large farms?," Food Policy, Elsevier, vol. 106(C).
    3. Bevis, Leah EM. & Barrett, Christopher B., 2020. "Close to the edge: High productivity at plot peripheries and the inverse size-productivity relationship," Journal of Development Economics, Elsevier, vol. 143(C).
    4. Chiarella, Cristina & Meyfroidt, Patrick & Abeygunawardane, Dilini & Conforti, Piero, 2023. "Balancing the trade-offs between land productivity, labor productivity and labor intensity," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1618-1634.
    5. Xingguang Li & Xuexi Huo, 2022. "Agricultural labor markets and the inverse plot size–productivity relationship: Evidence from China's apple growers," Review of Development Economics, Wiley Blackwell, vol. 26(4), pages 2163-2183, November.
    6. Juanjuan Cheng & Qian Wang & Huanmin Zhang & Toyohiko Matsubara & Naoki Yoshikawa & Jin Yu, 2022. "Does Farm Size Expansion Improve the Agricultural Environment? Evidence from Apple Farmers in China," Agriculture, MDPI, vol. 12(11), pages 1-23, October.
    7. Rada, Nicholas E. & Fuglie, Keith O., 2019. "New perspectives on farm size and productivity," Food Policy, Elsevier, vol. 84(C), pages 147-152.
    8. Karolina Pawlak & Walenty Poczta, 2020. "Agricultural Resources and their Productivity: A Transatlantic Perspective," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 18-49.
    9. William J. Burke & Stephen N. Morgan & Thelma Namonje & Milu Muyanga & Nicole M. Mason, 2023. "Beyond the “inverse relationship”: Area mismeasurement may affect actual productivity, not just how we understand it," Agricultural Economics, International Association of Agricultural Economists, vol. 54(4), pages 557-569, July.
    10. Mensah, Edouard R. & Kostandini, Genti, 2020. "The inverse farm size-productivity relationship under land size mis-measurement and in the presence of weather and price risks: Panel data evidence from Uganda," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304477, Agricultural and Applied Economics Association.
    11. Taylor, Matthew P.H. & Helfand, Steven M., 2021. "The Farm Size – Productivity Relationship in the Wake of Market Reform: An Analysis of Mexican Family Farms," 2021 Conference, August 17-31, 2021, Virtual 315138, International Association of Agricultural Economists.
    12. Omotilewa, Oluwatoba J. & Jayne, T.S. & Muyanga, Milu & Aromolaran, Adebayo B. & Liverpool-Tasie, Lenis Saweda O. & Awokuse, Titus, 2021. "A revisit of farm size and productivity: Empirical evidence from a wide range of farm sizes in Nigeria," World Development, Elsevier, vol. 146(C).
    13. Shichao Yuan & Jian Wang, 2022. "Involution Effect: Does China’s Rural Land Transfer Market Still Have Efficiency?," Land, MDPI, vol. 11(5), pages 1-18, May.
    14. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2019. "Assessing farm performance by size in Malawi, Tanzania, and Uganda," Food Policy, Elsevier, vol. 84(C), pages 153-164.
    15. Desiere, Sam & Jolliffe, Dean, 2018. "Land productivity and plot size: Is measurement error driving the inverse relationship?," Journal of Development Economics, Elsevier, vol. 130(C), pages 84-98.
    16. C. S. C. Sekhar & Namrata Thapa, 2023. "Rural market imperfections in India: Revisiting old debates with new evidence," Development Policy Review, Overseas Development Institute, vol. 41(5), September.
    17. Lowder, Sarah K. & Sánchez, Marco V. & Bertini, Raffaele, 2021. "Which farms feed the world and has farmland become more concentrated?," World Development, Elsevier, vol. 142(C).
    18. Ayala Wineman & Thomas S. Jayne, 2021. "Factor Market Activity and the Inverse Farm Size-Productivity Relationship in Tanzania," Journal of Development Studies, Taylor & Francis Journals, vol. 57(3), pages 443-464, March.
    19. Ateka, Josiah & Onono-Okelo, Perez Ayieko & Etyang, Martin, 2021. "Does the inverse farm size productivity hypothesis hold for perennial monocrop systems in developing countries? Evidence from Kenya," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(3), September.
    20. Xiang Deng & Jie Peng & Chunlin Wan, 2024. "The Impact of Internet Use on Land Productivity: Evidence from China Land Economy Survey," Land, MDPI, vol. 13(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1574-:d:929196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.