IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i10p961-d648988.html
   My bibliography  Save this article

Technological Heterogeneity in Pig Farming: A Metafrontier Approach—Perspectives from Hungary and Poland

Author

Listed:
  • Lajos Baráth

    (Centre for Economic and Regional Studies, Institute of Economics, 1097 Budapest, Hungary)

  • Imre Fertő

    (Centre for Economic and Regional Studies, Institute of Economics, 1097 Budapest, Hungary)

  • Jakub Staniszewski

    (Department of Macroeconomics and Agricultural Economics, Poznań University of Economics and Business, 61-875 Poznań, Poland)

Abstract

Despite remaining the most important type of animal production, pig production in Poland and Hungary declined after their accession to the European Union (EU) in 2004. This paper investigated the evolution of the technical efficiency of the pork industry in both countries. We applied stochastic frontier analysis, which takes into account heterogeneity in the production environment and production functions in both countries—true random effects, and a metafrontier model. We employed farm-level data from the Farm Accountancy Data Network sample during the period 2004–2015. Results illustrate the differences in production function in both countries and technological decline throughout the period of analysis. Furthermore, farms in Hungary were more technologically developed as well as less efficient in relation to the country frontier; however, the higher technological level resulted in generally greater efficiency in relation to the metafrontier. Our results suggest that different policy measures would be effective in the countries under analysis.

Suggested Citation

  • Lajos Baráth & Imre Fertő & Jakub Staniszewski, 2021. "Technological Heterogeneity in Pig Farming: A Metafrontier Approach—Perspectives from Hungary and Poland," Agriculture, MDPI, vol. 11(10), pages 1-13, October.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:961-:d:648988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/10/961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/10/961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Habtamu Alem & Gudbrand Lien & J. Brian Hardaker & Atle Guttormsen, 2019. "Regional differences in technical efficiency and technological gap of Norwegian dairy farms: a stochastic meta-frontier model," Applied Economics, Taylor & Francis Journals, vol. 51(4), pages 409-421, January.
    2. Dakpo, K Hervé & Desjeux, Yann & Jeanneaux, Philippe & Latruffe , Laure, 2017. "Productivity, technical efficiency and technological change in French agriculture during 2002-2014: A Färe-Primont index decomposition," Working Papers 263010, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    3. K. Hervé Dakpo & Yann Desjeux & Philippe Jeanneaux & Laure Latruffe, 2019. "Productivity, technical efficiency and technological change in French agriculture during 2002-2015: a Färe-Primont index decomposition using group frontiers and meta-frontier," Applied Economics, Taylor & Francis Journals, vol. 51(11), pages 1166-1182, March.
    4. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    5. Lukas Cechura & Aaron Grau & Heinrich Hockmann & Inna Levkovych & Zdenka Kroupova, 2017. "Catching Up or Falling Behind in European Agriculture: The Case of Milk Production," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(1), pages 206-227, February.
    6. Sebastian Lakner & Stefan Kirchweger & Daniel Hoop & Bernhard Brümmer & Jochen Kantelhardt, 2018. "The Effects of Diversification Activities on the Technical Efficiency of Organic Farms in Switzerland, Austria, and Southern Germany," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    7. Arnold Csonka & Imre Fertő, 2020. "Structural change and agglomeration in the Hungarian pork industry," European Planning Studies, Taylor & Francis Journals, vol. 28(9), pages 1756-1770, September.
    8. Xiaoheng Zhang & Feng Chu & Xiaohua Yu & Yingheng Zhou & Xu Tian & Xianhui Geng & Jinyang Yang, 2017. "Changing Structure and Sustainable Development for China’s Hog Sector," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    9. Latruffe, Laure & Fogarasi, József & Desjeux, Yann, 2012. "Efficiency, productivity and technology comparison for farms in Central and Western Europe: The case of field crop and dairy farming in Hungary and France," Economic Systems, Elsevier, vol. 36(2), pages 264-278.
    10. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    11. Sebastian Stępień & Jan Polcyn, 2016. "Pig Meat Market In Selected Eu Countries Under The Conditions Of Economic Integration: A Comparative Analysis Of Old And New Member States," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(18), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    2. Zdeňka Náglová & Tamara Rudinskaya, 2021. "Factors Influencing Technical Efficiency in the EU Dairy Farms," Agriculture, MDPI, vol. 11(11), pages 1-14, November.
    3. Habtamu Alem, 2021. "The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
    4. Abebayehu Girma Geffersa & Frank Wogbe Agbola & Amir Mahmood, 2022. "Modelling technical efficiency and technology gap in smallholder maize sector in Ethiopia: accounting for farm heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 54(5), pages 506-521, January.
    5. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    6. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    7. Rodriguez-Alvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021. "Alleviating energy poverty in Europe: Front-runners and laggards," Energy Economics, Elsevier, vol. 103(C).
    8. Victor Moutinho & Mara Madaleno, 2021. "Assessing Eco-Efficiency in Asian and African Countries Using Stochastic Frontier Analysis," Energies, MDPI, vol. 14(4), pages 1-17, February.
    9. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    10. Carlos Pestana Barros & Zhongfei Chen & Peter Wanke, 2016. "Efficiency in Chinese seaports: 2002–2012," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(3), pages 295-316, September.
    11. Gangopadhyay, Partha & Jain, Siddharth & Bakry, Walid, 2022. "In search of a rational foundation for the massive IT boom in the Australian banking industry: Can the IT boom really drive relationship banking?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    12. Levent Kutlu & Ran Wang, 2021. "Greenhouse Gas Emission Inefficiency Spillover Effects in European Countries," IJERPH, MDPI, vol. 18(9), pages 1-14, April.
    13. Sabrina Auci & Laura Castellucci & Manuela Coromaldi, 2021. "How does public spending affect technical efficiency? Some evidence from 15 European countries," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 108-130, January.
    14. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Electricity Sector Reform Performance in Sub-Saharan Africa: A Parametric Distance Function Approach," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    15. Zhang, Lin, 2017. "Correcting the uneven burden sharing of emission reduction across provinces in China," Energy Economics, Elsevier, vol. 64(C), pages 335-345.
    16. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    17. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    18. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    19. Williams, Jonathan, 2012. "Efficiency and market power in Latin American banking," Journal of Financial Stability, Elsevier, vol. 8(4), pages 263-276.
    20. Massimiliano Piacenza & Gilberto Turati, 2014. "Does Fiscal Discipline Towards Subnational Governments Affect Citizens' Well‐Being? Evidence On Health," Health Economics, John Wiley & Sons, Ltd., vol. 23(2), pages 199-224, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:10:p:961-:d:648988. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.mdpi.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.