IDEAS home Printed from https://ideas.repec.org/a/gam/jadmsc/v10y2020i2p23-d345918.html
   My bibliography  Save this article

From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?

Author

Listed:
  • Aditya Chidepatil

    (Radical Innovations Group, 65380 Vaasa, Finland)

  • Prabhleen Bindra

    (Radical Innovations Group, 65380 Vaasa, Finland)

  • Devyani Kulkarni

    (Radical Innovations Group, 65380 Vaasa, Finland)

  • Mustafa Qazi

    (Radical Innovations Group, 65380 Vaasa, Finland)

  • Meghana Kshirsagar

    (Radical Innovations Group, 65380 Vaasa, Finland)

  • Krishnaswamy Sankaran

    (Radical Innovations Group, 65380 Vaasa, Finland)

Abstract

Virgin polymers based on petrochemical feedstock are mainly preferred by most plastic goods manufacturers instead of recycled plastic feedstock. Major reason for this is the lack of reliable information about the quality, suitability, and availability of recycled plastics, which is partly due to lack of proper segregation techniques. In this paper, we present our ongoing efforts to segregate plastics based on its types and improve the reliability of information about recycled plastics using the first-of-its-kind blockchain smart contracts powered by multi-sensor data-fusion algorithms using artificial intelligence . We have demonstrated how different data-fusion modes can be employed to retrieve various physico-chemical parameters of plastic waste for accurate segregation. We have discussed how these smart tools help in efficiently segregating commingled plastics and can be reliably used in the circular economy of plastic. Using these tools, segregators, recyclers, and manufacturers can reliably share data, plan the supply chain, execute purchase orders, and hence, finally increase the use of recycled plastic feedstock.

Suggested Citation

  • Aditya Chidepatil & Prabhleen Bindra & Devyani Kulkarni & Mustafa Qazi & Meghana Kshirsagar & Krishnaswamy Sankaran, 2020. "From Trash to Cash: How Blockchain and Multi-Sensor-Driven Artificial Intelligence Can Transform Circular Economy of Plastic Waste?," Administrative Sciences, MDPI, vol. 10(2), pages 1-16, April.
  • Handle: RePEc:gam:jadmsc:v:10:y:2020:i:2:p:23-:d:345918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2076-3387/10/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2076-3387/10/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    2. Laurent Lebreton & Anthony Andrady, 2019. "Future scenarios of global plastic waste generation and disposal," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.
    3. Wong, S.L. & Ngadi, N. & Abdullah, T.A.T. & Inuwa, I.M., 2015. "Current state and future prospects of plastic waste as source of fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1167-1180.
    4. Marcus Haward, 2018. "Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance," Nature Communications, Nature, vol. 9(1), pages 1-3, December.
    5. Mahtab Kouhizadeh & Joseph Sarkis, 2018. "Blockchain Practices, Potentials, and Perspectives in Greening Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    6. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    7. Jiajia Zheng & Sangwon Suh, 2019. "Publisher Correction: Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graeme Moad & David Henry Solomon, 2021. "The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    2. Vincent Charles & Ali Emrouznejad & Tatiana Gherman, 2023. "A critical analysis of the integration of blockchain and artificial intelligence for supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 7-47, August.
    3. Naoum Tsolakis & Roman Schumacher & Manoj Dora & Mukesh Kumar, 2023. "Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation?," Annals of Operations Research, Springer, vol. 327(1), pages 157-210, August.
    4. Sebastian, R.M. & Louis, J., 2021. "Understanding waste management at airports: A study on current practices and challenges based on literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Yasanur Kayikci & Nazlican Gozacan‐Chase & Abderahman Rejeb & Kaliyan Mathiyazhagan, 2022. "Critical success factors for implementing blockchain‐based circular supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3595-3615, November.
    6. Swikriti Khadke & Pragya Gupta & Shanmukh Rachakunta & Chandreswar Mahata & Suma Dawn & Mohit Sharma & Deepak Verma & Aniruddha Pradhan & Ambati Mounika Sai Krishna & Seeram Ramakrishna & Sabyasachi C, 2021. "Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    7. Yunfei Yang & Guifei Qu & Lianlian Hua & Lifeng Wu, 2022. "Knowledge Mapping Visualization Analysis of Research on Blockchain in Management and Economics," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    8. Barbara Bigliardi & Serena Filippelli, 2021. "Investigating Circular Business Model Innovation through Keywords Analysis," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    9. Daniel Luiz de Mattos Nascimento & Diessica de Oliveira‐Dias & José Moyano‐Fuentes & Juan Manuel Maqueira Marín & Jose Arturo Garza‐Reyes, 2024. "Interrelationships between circular economy and Industry 4.0: A research agenda for sustainable supply chains," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 575-596, February.
    10. Kolade, Oluwaseun & Odumuyiwa, Victor & Abolfathi, Soroush & Schröder, Patrick & Wakunuma, Kutoma & Akanmu, Ifeoluwa & Whitehead, Timothy & Tijani, Bosun & Oyinlola, Muyiwa, 2022. "Technology acceptance and readiness of stakeholders for transitioning to a circular plastic economy in Africa," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Rohit Agrawal & Vishal A. Wankhede & Anil Kumar & Sunil Luthra & Abhijit Majumdar & Yigit Kazancoglu, 2022. "An Exploratory State-of-the-Art Review of Artificial Intelligence Applications in Circular Economy using Structural Topic Modeling," Operations Management Research, Springer, vol. 15(3), pages 609-626, December.
    12. Wankmüller, Christian & Pulsfort, Johannes & Kunovjanek, Maximilian & Polt, Romana & Craß, Stefan & Reiner, Gerald, 2023. "Blockchain-based tokenization and its impact on plastic bottle supply chains," International Journal of Production Economics, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Dongho & Jung, Sungyup & Lee, Sang Soo & Lin, Kun-Yi Andrew & Park, Young-Kwon & Kim, Hana & Tsang, Yiu Fai & Kwon, Eilhann E., 2021. "Leveraging carbon dioxide to control the H2/CO ratio in catalytic pyrolysis of fishing net waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Michael M. Blanke & Sabine D. Golombek, 2021. "Innovative Strategy to Reduce Single-Use Plastics in Sustainable Horticulture by a Refund Strategy for Flowerpots," Sustainability, MDPI, vol. 13(15), pages 1-8, July.
    3. Changping Zhao & Juanjuan Sun & Yun Zhang, 2022. "A Study of the Drivers of Decarbonization in the Plastics Supply Chain in the Post-COVID-19 Era," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    4. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    5. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    6. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    7. Gilbert Moyen Massa & Vasiliki-Maria Archodoulaki, 2024. "An Imported Environmental Crisis: Plastic Mismanagement in Africa," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    8. David Duindam, 2022. "Transitioning to Sustainable Healthcare: Decarbonising Healthcare Clinics, a Literature Review," Challenges, MDPI, vol. 13(2), pages 1-20, December.
    9. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    10. Emilia Jankowska & Miranda R. Gorman & Chad J. Frischmann, 2022. "Transforming the Plastic Production System Presents Opportunities to Tackle the Climate Crisis," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    11. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    12. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    14. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    15. Halayit Abrha & Jonnathan Cabrera & Yexin Dai & Muhammad Irfan & Abrham Toma & Shipu Jiao & Xianhua Liu, 2022. "Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    16. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    17. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    18. Daniel Holzer & Claudia Mair-Bauernfeind & Michael Kriechbaum & Romana Rauter & Tobias Stern, 2023. "Different but the Same? Comparing Drivers and Barriers for Circular Economy Innovation Systems in Wood- and Plastic-Based Industries," Circular Economy and Sustainability,, Springer.
    19. Zhao, Xiang & Klemeš, Jiří Jaromír & Fengqi You,, 2022. "Energy and environmental sustainability of waste personal protective equipment (PPE) treatment under COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Anna Tenhunen-Lunkka & Tom Rommens & Ive Vanderreydt & Lars Mortensen, 2023. "Greenhouse Gas Emission Reduction Potential of European Union’s Circularity Related Targets for Plastics," Circular Economy and Sustainability,, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jadmsc:v:10:y:2020:i:2:p:23-:d:345918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.