IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032124009602.html
   My bibliography  Save this article

The impact of bioplastics production on climate change mitigation, fossil fuels and land-use

Author

Listed:
  • Mattlar, Tuukka
  • Ekholm, Tommi

Abstract

As plastics production remains heavily fossil-dependent, plastics produced from biomass feedstocks could be a climate-friendly alternative. However, extensive biomass production is linked to reduced carbon sinks, thus posing an opposing challenge. This study analyses large-scale bioplastics production and its impacts on the energy system and land-use using an Integrated Assessment Model, and quantifies its climate change mitigation potential alongside other system-level impacts. The results indicate that a shift from fossil-based plastics to bioplastics can mitigate climate change cost-efficiently, particularly if techno-economic advancements and the utilization of biomass from residues can be realized. The total use of fossil resources is decreased with the emergence of bioplastics; but total biomass use remains on a similar level than in the scenarios without bioplastics, as the energy use of biomass declines as a response to the increasing bioplastics production. By 2100, bioplastics production is projected to account for roughly a third of total plastics production, with PLA constituting the majority; while drop-in bioplastics have a minor role in overall production.

Suggested Citation

  • Mattlar, Tuukka & Ekholm, Tommi, 2025. "The impact of bioplastics production on climate change mitigation, fossil fuels and land-use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032124009602
    DOI: 10.1016/j.rser.2024.115234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    2. Rahmad Syah & Afshin Davarpanah & Marischa Elveny & Amir Ghasemi & Dadan Ramdan, 2021. "The Economic Evaluation of Methanol and Propylene Production from Natural Gas at Petrochemical Industries in Iran," Sustainability, MDPI, vol. 13(17), pages 1-23, September.
    3. Anna B. Harper & Tom Powell & Peter M. Cox & Joanna House & Chris Huntingford & Timothy M. Lenton & Stephen Sitch & Eleanor Burke & Sarah E. Chadburn & William J. Collins & Edward Comyn-Platt & Vassil, 2018. "Land-use emissions play a critical role in land-based mitigation for Paris climate targets," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    4. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    5. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    6. Frankó, Balázs & Galbe, Mats & Wallberg, Ola, 2016. "Bioethanol production from forestry residues: A comparative techno-economic analysis," Applied Energy, Elsevier, vol. 184(C), pages 727-736.
    7. Richard Loulou & Maryse Labriet, 2008. "ETSAP-TIAM: the TIMES integrated assessment model Part I: Model structure," Computational Management Science, Springer, vol. 5(1), pages 7-40, February.
    8. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Paul Stegmann & Vassilis Daioglou & Marc Londo & Detlef P. Vuuren & Martin Junginger, 2022. "Plastic futures and their CO2 emissions," Nature, Nature, vol. 612(7939), pages 272-276, December.
    10. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    11. Jiajia Zheng & Sangwon Suh, 2019. "Publisher Correction: Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emma A. R. Zuiderveen & Koen J. J. Kuipers & Carla Caldeira & Steef V. Hanssen & Mitchell K. Hulst & Melinda M. J. Jonge & Anestis Vlysidis & Rosalie Zelm & Serenella Sala & Mark A. J. Huijbregts, 2023. "The potential of emerging bio-based products to reduce environmental impacts," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. R. Basuhi & Karan Bhuwalka & Richard Roth & Elsa A. Olivetti, 2024. "Evaluating strategies to increase PET bottle recycling in the United States," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 916-927, August.
    3. Marianne Zanon-Zotin & Luiz Bernardo Baptista & Rebecca Draeger & Pedro R. R. Rochedo & Alexandre Szklo & Roberto Schaeffer, 2024. "Unaddressed non-energy use in the chemical industry can undermine fossil fuels phase-out," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    5. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    6. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    7. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    8. Quinten Scheers & Philippe Nimmegeers & Or Galant & Sabrina Spatari & Niko Brande & Joost Brancart & Pieter Billen, 2025. "Assessing the Potential of Biodegradable Plastics in a Circular Economy: A Methodological Outlook," Circular Economy and Sustainability, Springer, vol. 5(2), pages 1291-1305, April.
    9. Gilbert Moyen Massa & Vasiliki-Maria Archodoulaki, 2024. "An Imported Environmental Crisis: Plastic Mismanagement in Africa," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    10. Giarola, Sara & Molar-Cruz, Anahi & Vaillancourt, Kathleen & Bahn, Olivier & Sarmiento, Luis & Hawkes, Adam & Brown, Maxwell, 2021. "The role of energy storage in the uptake of renewable energy: A model comparison approach," Energy Policy, Elsevier, vol. 151(C).
    11. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    12. Camille Pajot & Nils Artiges & Benoit Delinchant & Simon Rouchier & Frédéric Wurtz & Yves Maréchal, 2019. "An Approach to Study District Thermal Flexibility Using Generative Modeling from Existing Data," Energies, MDPI, vol. 12(19), pages 1-22, September.
    13. David Duindam, 2022. "Transitioning to Sustainable Healthcare: Decarbonising Healthcare Clinics, a Literature Review," Challenges, MDPI, vol. 13(2), pages 1-20, December.
    14. Mohammad Alaghemandi, 2024. "Sustainable Solutions Through Innovative Plastic Waste Recycling Technologies," Sustainability, MDPI, vol. 16(23), pages 1-37, November.
    15. Jin, Enze & Jabarivelisdeh, Banafsheh & Schoeneberger, Carrie & Chamanara, Sanaz & Dunn, Jennifer B. & Christopher, Phillip & Masanet, Eric, 2024. "Critical review of technologies, data, and scenario elements in net-zero pathway modeling for the chemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    16. Nechumi Malovicki-Yaffe & Boaz Hameiri & Leah Bloy & Ram Fishman, 2025. "Environmental taxation triggers persistent psychological resistance to climate policy," Policy Sciences, Springer;Society of Policy Sciences, vol. 58(1), pages 145-159, March.
    17. Tang, Bao-Jun & Wang, Xiang-Yu & Wei, Yi-Ming, 2019. "Quantities versus prices for best social welfare in carbon reduction: A literature review," Applied Energy, Elsevier, vol. 233, pages 554-564.
    18. Chrysanthos Maraveas, 2020. "Environmental Sustainability of Plastic in Agriculture," Agriculture, MDPI, vol. 10(8), pages 1-15, July.
    19. Welsch, M. & Howells, M. & Bazilian, M. & DeCarolis, J.F. & Hermann, S. & Rogner, H.H., 2012. "Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code," Energy, Elsevier, vol. 46(1), pages 337-350.
    20. Klemeš, Jiří Jaromír & Fan, Yee Van & Tan, Raymond R. & Jiang, Peng, 2020. "Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032124009602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.