IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v612y2022i7939d10.1038_s41586-022-05422-5.html
   My bibliography  Save this article

Plastic futures and their CO2 emissions

Author

Listed:
  • Paul Stegmann

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency
    Netherlands Organisation for Applied Scientific Research)

  • Vassilis Daioglou

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency)

  • Marc Londo

    (Utrecht University
    Netherlands Association for Renewable Energy)

  • Detlef P. Vuuren

    (Utrecht University
    PBL Netherlands Environmental Assessment Agency)

  • Martin Junginger

    (Utrecht University)

Abstract

Plastics show the strongest production growth of all bulk materials and are already responsible for 4.5% of global greenhouse gas emissions1,2. If no new policies are implemented, we project a doubling of global plastic demand by 2050 and more than a tripling by 2100, with an almost equivalent increase in CO2 emissions. Here we analyse three alternative CO2 emission-mitigation pathways for the global plastics sector until 2100, covering the entire life cycle from production to waste management. Our results show that, through bio-based carbon sequestration in plastic products, a combination of biomass use and landfilling can achieve negative emissions in the long term; however, this involves continued reliance on primary feedstock. A circular economy approach without an additional bioeconomy push reduces resource consumption by 30% and achieves 10% greater emission reductions before 2050 while reducing the potential of negative emissions in the long term. A circular bioeconomy approach combining recycling with higher biomass use could ultimately turn the sector into a net carbon sink, while at the same time phasing out landfilling and reducing resource consumption. Our work improves the representation of material flows and the circular economy in global energy and emission models, and provides insight into long-term dynamics in the plastics sector.

Suggested Citation

  • Paul Stegmann & Vassilis Daioglou & Marc Londo & Detlef P. Vuuren & Martin Junginger, 2022. "Plastic futures and their CO2 emissions," Nature, Nature, vol. 612(7939), pages 272-276, December.
  • Handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05422-5
    DOI: 10.1038/s41586-022-05422-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-022-05422-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-022-05422-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    2. Xiangdong Zhu & Litao Lin & Mingyue Pang & Chao Jia & Longlong Xia & Guosheng Shi & Shicheng Zhang & Yuanda Lu & Liming Sun & Fengbo Yu & Jie Gao & Zhelin He & Xuan Wu & Aodi Li & Liang Wang & Meiling, 2024. "Continuous and low-carbon production of biomass flash graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Li, Jie & Yu, Di & Pan, Lanjia & Xu, Xinhai & Wang, Xiaonan & Wang, Yin, 2023. "Recent advances in plastic waste pyrolysis for liquid fuel production: Critical factors and machine learning applications," Applied Energy, Elsevier, vol. 346(C).
    4. Mohammad Peydayesh, 2024. "Sustainable Materials via the Assembly of Biopolymeric Nanobuilding Blocks Valorized from Agri-Food Waste," Sustainability, MDPI, vol. 16(3), pages 1-11, February.
    5. Emma A. R. Zuiderveen & Koen J. J. Kuipers & Carla Caldeira & Steef V. Hanssen & Mitchell K. Hulst & Melinda M. J. Jonge & Anestis Vlysidis & Rosalie Zelm & Serenella Sala & Mark A. J. Huijbregts, 2023. "The potential of emerging bio-based products to reduce environmental impacts," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Anna Schulte & Benjamin Kampmann & Christina Galafton, 2023. "Measuring the Circularity and Impact Reduction Potential of Post-Industrial and Post-Consumer Recycled Plastics," Sustainability, MDPI, vol. 15(16), pages 1-26, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:612:y:2022:i:7939:d:10.1038_s41586-022-05422-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.