IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43797-9.html
   My bibliography  Save this article

The potential of emerging bio-based products to reduce environmental impacts

Author

Listed:
  • Emma A. R. Zuiderveen

    (Radboud University
    European Commission, Joint Research Centre)

  • Koen J. J. Kuipers

    (Radboud University)

  • Carla Caldeira

    (European Commission, Joint Research Centre)

  • Steef V. Hanssen

    (Radboud University)

  • Mitchell K. Hulst

    (Radboud University
    TNO)

  • Melinda M. J. Jonge

    (Radboud University)

  • Anestis Vlysidis

    (European Commission, Joint Research Centre
    National Technical University of Athens)

  • Rosalie Zelm

    (Radboud University)

  • Serenella Sala

    (European Commission, Joint Research Centre)

  • Mark A. J. Huijbregts

    (Radboud University
    TNO)

Abstract

The current debate on the sustainability of bio-based products questions the environmental benefits of replacing fossil- by bio-resources. Here, we analyze the environmental trade-offs of 98 emerging bio-based materials compared to their fossil counterparts, reported in 130 studies. Although greenhouse gas life cycle emissions for emerging bio-based products are on average 45% lower (−52 to −37%; 95% confidence interval), we found a large variation between individual bio-based products with none of them reaching net-zero emissions. Grouped in product categories, reductions in greenhouse gas emissions ranged from 19% (−52 to 35%) for bioadhesives to 73% (−84 to −54%) for biorefinery products. In terms of other environmental impacts, we found evidence for an increase in eutrophication (369%; 163 to 737%), indicating that environmental trade-offs should not be overlooked. Our findings imply that the environmental sustainability of bio-based products should be evaluated on an individual product basis and that more radical product developments are required to reach climate-neutral targets.

Suggested Citation

  • Emma A. R. Zuiderveen & Koen J. J. Kuipers & Carla Caldeira & Steef V. Hanssen & Mitchell K. Hulst & Melinda M. J. Jonge & Anestis Vlysidis & Rosalie Zelm & Serenella Sala & Mark A. J. Huijbregts, 2023. "The potential of emerging bio-based products to reduce environmental impacts," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43797-9
    DOI: 10.1038/s41467-023-43797-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43797-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43797-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sheikh Moniruzzaman Moni & Roksana Mahmud & Karen High & Michael Carbajales‐Dale, 2020. "Life cycle assessment of emerging technologies: A review," Journal of Industrial Ecology, Yale University, vol. 24(1), pages 52-63, February.
    2. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    3. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    4. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    5. Anna B. Harper & Tom Powell & Peter M. Cox & Joanna House & Chris Huntingford & Timothy M. Lenton & Stephen Sitch & Eleanor Burke & Sarah E. Chadburn & William J. Collins & Edward Comyn-Platt & Vassil, 2018. "Land-use emissions play a critical role in land-based mitigation for Paris climate targets," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    6. Jiajia Zheng & Sangwon Suh, 2019. "Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(5), pages 374-378, May.
    7. S. V. Hanssen & V. Daioglou & Z. J. N. Steinmann & J. C. Doelman & D. P. Vuuren & M. A. J. Huijbregts, 2020. "The climate change mitigation potential of bioenergy with carbon capture and storage," Nature Climate Change, Nature, vol. 10(11), pages 1023-1029, November.
    8. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    9. Geoffrey Guest & Francesco Cherubini & Anders H. Strømman, 2013. "Global Warming Potential of Carbon Dioxide Emissions from Biomass Stored in the Anthroposphere and Used for Bioenergy at End of Life," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 20-30, February.
    10. Ólafur Ögmundarson & Markus J. Herrgård & Jochen Forster & Michael Z. Hauschild & Peter Fantke, 2020. "Addressing environmental sustainability of biochemicals," Nature Sustainability, Nature, vol. 3(3), pages 167-174, March.
    11. Paul Stegmann & Vassilis Daioglou & Marc Londo & Detlef P. Vuuren & Martin Junginger, 2022. "Plastic futures and their CO2 emissions," Nature, Nature, vol. 612(7939), pages 272-276, December.
    12. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    13. Jiajia Zheng & Sangwon Suh, 2019. "Publisher Correction: Strategies to reduce the global carbon footprint of plastics," Nature Climate Change, Nature, vol. 9(7), pages 567-567, July.
    14. Escobar, Neus & Laibach, Natalie, 2021. "Sustainability check for bio-based technologies: A review of process-based and life cycle approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattlar, Tuukka & Ekholm, Tommi, 2025. "The impact of bioplastics production on climate change mitigation, fossil fuels and land-use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Steffi Weyand & Kotaro Kawajiri & Claudiu Mortan & Liselotte Schebek, 2023. "Scheme for generating upscaling scenarios of emerging functional materials based energy technologies in prospective LCA (UpFunMatLCA)," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 676-692, June.
    3. Elisabeth Van Roijen & Sabbie A. Miller, 2025. "Leveraging biogenic resources to achieve global plastic decarbonization by 2050," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. R. Basuhi & Karan Bhuwalka & Richard Roth & Elsa A. Olivetti, 2024. "Evaluating strategies to increase PET bottle recycling in the United States," Journal of Industrial Ecology, Yale University, vol. 28(4), pages 916-927, August.
    5. Marianne Zanon-Zotin & Luiz Bernardo Baptista & Rebecca Draeger & Pedro R. R. Rochedo & Alexandre Szklo & Roberto Schaeffer, 2024. "Unaddressed non-energy use in the chemical industry can undermine fossil fuels phase-out," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Nariê Rinke Dias de Souza & Marisa Groenestege & Jurjen Spekreijse & Cláudia Ribeiro & Cristina T. Matos & Massimo Pizzol & Francesco Cherubini, 2024. "Challenges and opportunities toward a sustainable bio‐based chemical sector in Europe," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    7. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    8. N. O. Kapustin & D. A. Grushevenko, 2023. "Assessment of Long-Term Prospects for Demand in the Plastics Market in the Face of Industry Transformation," Studies on Russian Economic Development, Springer, vol. 34(2), pages 243-253, April.
    9. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    10. Quinten Scheers & Philippe Nimmegeers & Or Galant & Sabrina Spatari & Niko Brande & Joost Brancart & Pieter Billen, 2025. "Assessing the Potential of Biodegradable Plastics in a Circular Economy: A Methodological Outlook," Circular Economy and Sustainability, Springer, vol. 5(2), pages 1291-1305, April.
    11. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    12. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    13. Emmann, Carsten H. & Schaper, Christian & Theuvsen, Ludwig, 2011. "Der Markt für Bioenergie 2012," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61.
    14. Thaler, S. & Zessner, M. & Weigl, M. & Rechberger, H. & Schilling, K. & Kroiss, H., 2015. "Possible implications of dietary changes on nutrient fluxes, environment and land use in Austria," Agricultural Systems, Elsevier, vol. 136(C), pages 14-29.
    15. Tiffany L. Fess & James B. Kotcon & Vagner A. Benedito, 2011. "Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population," Sustainability, MDPI, vol. 3(10), pages 1-31, October.
    16. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    17. Bose, Arnab & Ramji, Aditya & Singh, Jarnail & Dholakia, Dhairya, 2012. "A case study for sustainable development action using financial gradients," Energy Policy, Elsevier, vol. 47(S1), pages 79-86.
    18. Till Hermanns & Katharina Helming & Katharina Schmidt & Hannes Jochen König & Heiko Faust, 2015. "Stakeholder Strategies for Sustainability Impact Assessment of Land Use Scenarios: Analytical Framework and Identifying Land Use Claims," Land, MDPI, vol. 4(3), pages 1-29, September.
    19. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    20. Carlo Carraro & Marinella Davide & Valeria Barbi & Giacomo Marangoni, 2013. "Science adva ncements, policy immobility: the two fac es of climate (in)action," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 5-29.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43797-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.