IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v74y2019icp174-186.html
   My bibliography  Save this article

Transportation resilience to climate change and extreme weather events – Beyond risk and robustness

Author

Listed:
  • Markolf, Samuel A.
  • Hoehne, Christopher
  • Fraser, Andrew
  • Chester, Mikhail V.
  • Underwood, B. Shane

Abstract

The long-term reliability and functioning of transportation systems will increasingly need to consider and plan for climate change and extreme weather events. Transportation systems have largely been designed and operated for historical climate conditions that are now often exceeded. Emerging knowledge of how to plan for climate change largely embraces risk-based thinking favoring more robust infrastructure designs. However, there remain questions about whether this approach is sufficient given the uncertainty and non-stationarity of the climate, and many other driving factors affecting transportation systems (e.g., funding, rapid technological change, population and utilization shifts, etc.). This paper examines existing research and knowledge related to the vulnerability of the transportation system to climate change and extreme weather events and finds that there are both direct and indirect “pathways of disruption.” Direct pathways of disruption consist of both abrupt impacts to physical infrastructure and impacts via non-physical factors such as human health, behavior, and decision making. Similarly, indirect pathways of disruption result from interconnections with other critical infrastructure and social systems. Currently, the direct pathways appear to receive much of the focus in vulnerability and risk assessments, and the predominant approach for addressing these pathways of disruption emphasizes strengthening and armoring infrastructure (robustness) guided by risk analysis. However, our analysis reveals that indirect pathways of disruption can have meaningful impacts, while also being less amenable to robustness-based approaches. As a result, we posit that concepts like flexibility and agility appear to be well suited to complement the status quo of robustness by addressing the indirect and non-physical pathways of disruption that often prove challenging - thereby improving the resilience of transportation systems.

Suggested Citation

  • Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
  • Handle: RePEc:eee:trapol:v:74:y:2019:i:c:p:174-186
    DOI: 10.1016/j.tranpol.2018.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17305000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Shane Underwood & Zack Guido & Padmini Gudipudi & Yarden Feinberg, 2017. "Increased costs to US pavement infrastructure from future temperature rise," Nature Climate Change, Nature, vol. 7(10), pages 704-707, October.
    2. David C. Grabowski & Michael A. Morrisey, 2004. "Gasoline prices and motor vehicle fatalities," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 575-593.
    3. Giachetti, Ronald E. & Martinez, Luis D. & Saenz, Oscar A. & Chen, Chin-Sheng, 2003. "Analysis of the structural measures of flexibility and agility using a measurement theoretical framework," International Journal of Production Economics, Elsevier, vol. 86(1), pages 47-62, October.
    4. Luisa Franchina & Marco Carbonelli & Laura Gratta & Maria Crisci & Daniele Perucchini, 2011. "An impact-based approach for the analysis of cascading effects in critical infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 7(1), pages 73-90.
    5. Scott, Christopher A. & Pierce, Suzanne A. & Pasqualetti, Martin J. & Jones, Alice L. & Montz, Burrell E. & Hoover, Joseph H., 2011. "Policy and institutional dimensions of the water-energy nexus," Energy Policy, Elsevier, vol. 39(10), pages 6622-6630, October.
    6. Zhu, Shanjiang & Levinson, David & Liu, Henry X. & Harder, Kathleen, 2010. "The traffic and behavioral effects of the I-35W Mississippi River bridge collapse," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 771-784, December.
    7. Yusuf, Y. Y. & Sarhadi, M. & Gunasekaran, A., 1999. "Agile manufacturing:: The drivers, concepts and attributes," International Journal of Production Economics, Elsevier, vol. 62(1-2), pages 33-43, May.
    8. Schweikert, Amy & Chinowsky, Paul & Kwiatkowski, Kyle & Espinet, Xavier, 2014. "The infrastructure planning support system: Analyzing the impact of climate change on road infrastructure and development," Transport Policy, Elsevier, vol. 35(C), pages 146-153.
    9. Taylor, Michael A.P. & Philp, Michelle L., 2015. "Investigating the impact of maintenance regimes on the design life of road pavements in a changing climate and the implications for transport policy," Transport Policy, Elsevier, vol. 41(C), pages 117-135.
    10. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    11. Rae Zimmerman & Carlos E. Restrepo, 2006. "The next step: quantifying infrastructure interdependencies to improve security," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(2/3), pages 215-230.
    12. Barker, Kash & Haimes, Yacov Y., 2009. "Assessing uncertainty in extreme events: Applications to risk-based decision making in interdependent infrastructure sectors," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 819-829.
    13. Böcker, Lars & Prillwitz, Jan & Dijst, Martin, 2013. "Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland," Journal of Transport Geography, Elsevier, vol. 28(C), pages 176-185.
    14. Espinet, Xavier & Schweikert, Amy & van den Heever, Nicola & Chinowsky, Paul, 2016. "Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico," Transport Policy, Elsevier, vol. 50(C), pages 78-86.
    15. Maliszewski, Paul J. & Larson, Elisabeth K. & Perrings, Charles, 2012. "Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 161-171.
    16. Woods, David D., 2015. "Four concepts for resilience and the implications for the future of resilience engineering," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 5-9.
    17. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    18. Rattanachot, Wit & Wang, Yuhong & Chong, Dan & Suwansawas, Suchatvee, 2015. "Adaptation strategies of transport infrastructures to global climate change," Transport Policy, Elsevier, vol. 41(C), pages 159-166.
    19. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    20. Khattak, Asad J. & De Palma, André, 1997. "The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 181-203, May.
    21. Matthew D. Bartos & Mikhail V. Chester, 2015. "Impacts of climate change on electric power supply in the Western United States," Nature Climate Change, Nature, vol. 5(8), pages 748-752, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    2. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    3. Zanni, Alberto M. & Ryley, Tim J., 2015. "The impact of extreme weather conditions on long distance travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 305-319.
    4. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    5. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    6. Espinet, Xavier & Schweikert, Amy & van den Heever, Nicola & Chinowsky, Paul, 2016. "Planning resilient roads for the future environment and climate change: Quantifying the vulnerability of the primary transport infrastructure system in Mexico," Transport Policy, Elsevier, vol. 50(C), pages 78-86.
    7. Bardal, Kjersti Granås & Mathisen, Terje Andreas, 2015. "Winter problems on mountain passes – Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 59-72.
    8. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    9. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    10. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    11. Lu, Qing-Chang & Zhang, Junyi & Peng, Zhong-Ren & Rahman, ABM Sertajur, 2014. "Inter-city travel behaviour adaptation to extreme weather events," Journal of Transport Geography, Elsevier, vol. 41(C), pages 148-153.
    12. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "Investigating the impacts of weather variability on individual’s daily activity–travel patterns: A comparison between commuters and non-commuters in Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 47-64.
    13. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    14. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    15. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    16. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    17. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    18. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    19. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    20. Ashley R. Coles & Kyle E. Walker, 2021. "Assessing motorist behavior during flash floods in Tucson, Arizona," Transportation, Springer, vol. 48(6), pages 3037-3057, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:74:y:2019:i:c:p:174-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.