IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v77y2015icp305-319.html
   My bibliography  Save this article

The impact of extreme weather conditions on long distance travel behaviour

Author

Listed:
  • Zanni, Alberto M.
  • Ryley, Tim J.

Abstract

This paper examines traveller attitudes and responses towards disruption from weather and natural events. An internet-based travel behaviour survey was conducted with more than 2000 respondents in London and Glasgow. Of these respondents, 740 reported information on over 1000 long distance trips affected by extreme weather and natural events over the previous three years. Results show respondents are generally cautious towards travelling during extreme weather events. For a slight majority in the case of air and public transport, and a greater one in the case of car, travellers did not considerably alter their travel plan following the disruption. This was explained not only by less disruptive weather conditions (with heavy snow and volcanic ash being the most disruptive) and impact, but also by the relative importance of their trips. Differences between transport modes were not substantial. Business trips sometimes appeared to give travellers more flexibility, some other times not. Origin and destination did have an impact on reaction, as well as the presence of children whilst travelling. Mixed results were obtained about socio-economic and attitudinal variables. Age in particular did not appear to have a significant effect. Whilst most respondents did acknowledge no external influence in their decision, results showed an important contribution of transport organisation staff, as well as home and mobile internet technology. A limited but still considerable number of respondents indicated their closest friends/relatives as the main influence of their decisions. The results will help planners deploy strategies to mitigate the negative effects of weather related disruptions.

Suggested Citation

  • Zanni, Alberto M. & Ryley, Tim J., 2015. "The impact of extreme weather conditions on long distance travel behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 305-319.
  • Handle: RePEc:eee:transa:v:77:y:2015:i:c:p:305-319
    DOI: 10.1016/j.tra.2015.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415001111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marsden, Greg & Docherty, Iain, 2013. "Insights on disruptions as opportunities for transport policy change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 46-55.
    2. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.
    3. Maddison, David & Rehdanz, Katrin, 2011. "The impact of climate on life satisfaction," Ecological Economics, Elsevier, vol. 70(12), pages 2437-2445.
    4. Jeuring, Jelmer & Becken, Susanne, 2013. "Tourists and severe weather – An exploration of the role of ‘Locus of Responsibility’ in protective behaviour decisions," Tourism Management, Elsevier, vol. 37(C), pages 193-202.
    5. Cools, Mario & Creemers, Lieve, 2013. "The dual role of weather forecasts on changes in activity-travel behavior," Journal of Transport Geography, Elsevier, vol. 28(C), pages 167-175.
    6. Katrin Rehdanz & David Maddison, 2009. "The amenity value of climate to households in Germany," Oxford Economic Papers, Oxford University Press, vol. 61(1), pages 150-167, January.
    7. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    8. André De Palma & Denis Rochat, 1999. "Understanding individual travel decisions: results from a commuters survey in Geneva," Transportation, Springer, vol. 26(3), pages 263-281, August.
    9. Hjorthol, Randi, 2013. "Winter weather – an obstacle to older people’s activities?," Journal of Transport Geography, Elsevier, vol. 28(C), pages 186-191.
    10. Ryley, Tim J. & Zanni, Alberto M., 2013. "An examination of the relationship between social interactions and travel uncertainty," Journal of Transport Geography, Elsevier, vol. 31(C), pages 249-257.
    11. Kalkstein, Adam J & Kuby, Michael & Gerrity, Daniel & Clancy, James J, 2009. "An analysis of air mass effects on rail ridership in three US cities," Journal of Transport Geography, Elsevier, vol. 17(3), pages 198-207.
    12. Jaroszweski, David & Chapman, Lee & Petts, Judith, 2010. "Assessing the potential impact of climate change on transportation: the need for an interdisciplinary approach," Journal of Transport Geography, Elsevier, vol. 18(2), pages 331-335.
    13. Dargay, Joyce M. & Clark, Stephen, 2012. "The determinants of long distance travel in Great Britain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 576-587.
    14. Murray, Kyle B. & Di Muro, Fabrizio & Finn, Adam & Popkowski Leszczyc, Peter, 2010. "The effect of weather on consumer spending," Journal of Retailing and Consumer Services, Elsevier, vol. 17(6), pages 512-520.
    15. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    16. Uri Simonsohn, 2010. "Weather To Go To College," Economic Journal, Royal Economic Society, vol. 120(543), pages 270-280, March.
    17. Böcker, Lars & Prillwitz, Jan & Dijst, Martin, 2013. "Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland," Journal of Transport Geography, Elsevier, vol. 28(C), pages 176-185.
    18. Singhal, Abhishek & Kamga, Camille & Yazici, Anil, 2014. "Impact of weather on urban transit ridership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 379-391.
    19. Sabir, Muhammad & van Ommeren, Jos & Rietveld, Piet, 2013. "Weather to travel to the beach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 79-86.
    20. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schaefer, Kerstin J. & Tuitjer, Leonie & Levin-Keitel, Meike, 2021. "Transport disrupted – Substituting public transport by bike or car under Covid 19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 202-217.
    2. Leng, Nuannuan & Corman, Francesco, 2020. "The role of information availability to passengers in public transport disruptions: An agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 214-236.
    3. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    4. Das, Deepjyoti & Sharma, Somesh Kumar & Parti, Raman & Singh, Jagroop, 2016. "Analyzing the effect of aviation infrastructure over aviation fuel consumption reduction," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 89-100.
    5. Lesley Strawderman & Daniel W. Carruth & Kathleen Sherman-Morris & Philip Menard & Merrill Warkentin & Karen S. McNeal, 2018. "Individual transportation decisions under conditions of risk and uncertainty," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 927-942, June.
    6. Jiahang He & Toshiyuki Yamamoto & Tomio Miwa & Takayuki Morikawa, 2020. "Hazard Duration Model with Panel Data for Daily Car Travel Distance: A Toyota City Case Study," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    7. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    8. Qing-Chang Lu & Junyi Zhang & A. B. M. Sertajur Rahman, 2017. "The interrelationship between travel behavior and life choices in adapting to flood disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1005-1022, January.
    9. Zanni, Alberto M & Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2017. "Improving scenario methods in infrastructure planning: A case study of long distance travel and mobility in the UK under extreme weather uncertainty and a changing climate," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 180-197.
    10. An, Ran & Zahnow, Renee & Pojani, Dorina & Corcoran, Jonathan, 2019. "Weather and cycling in New York: The case of Citibike," Journal of Transport Geography, Elsevier, vol. 77(C), pages 97-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junlong & Li, Xuhong & Chen, Dawei & Godding, Lucy, 2018. "Assessment of metro ridership fluctuation caused by weather conditions in Asian context: Using archived weather and ridership data in Nanjing," Journal of Transport Geography, Elsevier, vol. 66(C), pages 356-368.
    2. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    3. Wei, Ming & Liu, Yan & Sigler, Thomas & Liu, Xiaoyang & Corcoran, Jonathan, 2019. "The influence of weather conditions on adult transit ridership in the sub-tropics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 106-118.
    4. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    5. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    6. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    7. Timothy Otim & Leandro Dörfer & Dina Bousdar Ahmed & Estefania Munoz Diaz, 2022. "Modeling the Impact of Weather and Context Data on Transport Mode Choices: A Case Study of GPS Trajectories from Beijing," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    8. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    9. Wei, Ming, 2022. "How does the weather affect public transit ridership? A model with weather-passenger variations," Journal of Transport Geography, Elsevier, vol. 98(C).
    10. Ashley R. Coles & Kyle E. Walker, 2021. "Assessing motorist behavior during flash floods in Tucson, Arizona," Transportation, Springer, vol. 48(6), pages 3037-3057, December.
    11. Kashfi, Syeed Anta & Bunker, Jonathan M. & Yigitcanlar, Tan, 2016. "Modelling and analysing effects of complex seasonality and weather on an area's daily transit ridership rate," Journal of Transport Geography, Elsevier, vol. 54(C), pages 310-324.
    12. Bardal, Kjersti Granås & Mathisen, Terje Andreas, 2015. "Winter problems on mountain passes – Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 59-72.
    13. Tao, Sui & Corcoran, Jonathan & Hickman, Mark & Stimson, Robert, 2016. "The influence of weather on local geographical patterns of bus usage," Journal of Transport Geography, Elsevier, vol. 54(C), pages 66-80.
    14. Pan Wu & Jinlong Li & Yuzhuang Pian & Xiaochen Li & Zilin Huang & Lunhui Xu & Guilin Li & Ruonan Li, 2022. "How Determinants Affect Transfer Ridership between Metro and Bus Systems: A Multivariate Generalized Poisson Regression Analysis Method," Sustainability, MDPI, vol. 14(15), pages 1-31, August.
    15. Bardal, Kjersti Granås, 2017. "Impacts of adverse weather on Arctic road transport," Journal of Transport Geography, Elsevier, vol. 59(C), pages 49-58.
    16. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    17. Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
    18. Peng Guo & Yanling Sun & Qiyi Chen & Junrong Li & Zifei Liu, 2022. "The Impact of Rainfall on Urban Human Mobility from Taxi GPS Data," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    19. Wei, Ming, 2022. "Investigating the influence of weather on public transit passenger’s travel behaviour: Empirical findings from Brisbane, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 36-51.
    20. Wu, Jingwen & Liao, Hua, 2020. "Weather, travel mode choice, and impacts on subway ridership in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 264-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:77:y:2015:i:c:p:305-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.