IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v162y2022icp282-295.html
   My bibliography  Save this article

Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions

Author

Listed:
  • Faber, R.M.
  • Jonkeren, O.
  • de Haas, M.C.
  • Molin, E.J.E.
  • Kroesen, M.

Abstract

To inform policies aimed at more sustainable travel behaviour, previous research has investigated the concept of multimodality. The notion underlying this line of research is that increasing the degree of multimodality will lead to less car dependence and therefore more sustainable travel behaviour. This paper investigates multimodality by inferring modality styles and revealing their response to exogenous variation in the form of the weather. The main idea of this paper is that travellers with a more multimodal modality style are more sensitive to exogenous variation, and that they are therefore more likely to resort to the use of the car when ‘car-favouring’ conditions present themselves. The results show that the effects of weather conditions on mode choices do indeed differ between three modality styles. The identified modality styles can be summarised as (1) bike + car; (2) car mostly and (3) multimodal. For the third class, which has the highest degree of multimodality, the use of the sustainable modes is more strongly affected by weather conditions when compared to the first, less multimodal, class. The least multimodal second class meanwhile is least affected by a change in weather conditions. More multimodal travellers thus seem to be more susceptible to exogenous variation, which might prevent the formation of sustainable travel habits or patterns. Based on these results, the claim that a higher degree of multimodality will lead to more sustainable behaviour and that policy makers should aim to realise a shift towards more multimodal modality styles needs to be nuanced. Policy makers should instead focus directly on increasing the attractiveness of sustainable travel modes, which will inadvertently lead to more multimodal modality styles.

Suggested Citation

  • Faber, R.M. & Jonkeren, O. & de Haas, M.C. & Molin, E.J.E. & Kroesen, M., 2022. "Inferring modality styles by revealing mode choice heterogeneity in response to weather conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 282-295.
  • Handle: RePEc:eee:transa:v:162:y:2022:i:c:p:282-295
    DOI: 10.1016/j.tra.2022.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856422001586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Böcker, Lars & Dijst, Martin & Faber, Jan, 2016. "Weather, transport mode choices and emotional travel experiences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 360-373.
    2. Helbich, Marco & Böcker, Lars & Dijst, Martin, 2014. "Geographic heterogeneity in cycling under various weather conditions: evidence from Greater Rotterdam," Journal of Transport Geography, Elsevier, vol. 38(C), pages 38-47.
    3. Ton, Danique & Bekhor, Shlomo & Cats, Oded & Duives, Dorine C. & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2020. "The experienced mode choice set and its determinants: Commuting trips in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 744-758.
    4. Calastri, Chiara & Hess, Stephane & Choudhury, Charisma & Daly, Andrew & Gabrielli, Lorenzo, 2019. "Mode choice with latent availability and consideration: Theory and a case study," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 374-385.
    5. Molin, Eric & Mokhtarian, Patricia & Kroesen, Maarten, 2016. "Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 14-29.
    6. Cools, Mario & Creemers, Lieve, 2013. "The dual role of weather forecasts on changes in activity-travel behavior," Journal of Transport Geography, Elsevier, vol. 28(C), pages 167-175.
    7. Wadud, Zia, 2014. "Cycling in a changed climate," Journal of Transport Geography, Elsevier, vol. 35(C), pages 12-20.
    8. Carlo Giacomo Prato & Katrín Halldórsdóttir & Otto Anker Nielsen, 2017. "Latent lifestyle and mode choice decisions when travelling short distances," Transportation, Springer, vol. 44(6), pages 1343-1363, November.
    9. Zhao, Jinbao & Wang, Jian & Xing, Zhaomin & Luan, Xin & Jiang, Yang, 2018. "Weather and cycling: Mining big data to have an in-depth understanding of the association of weather variability with cycling on an off-road trail and an on-road bike lane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 119-135.
    10. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7ng2z24q, University of California Transportation Center.
    11. Eva Heinen & Giulio Mattioli, 2019. "Does a high level of multimodality mean less car use? An exploration of multimodality trends in England," Transportation, Springer, vol. 46(4), pages 1093-1126, August.
    12. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    13. Marco Diana & Patricia Mokhtarian, 2009. "Grouping travelers on the basis of their different car and transit levels of use," Transportation, Springer, vol. 36(4), pages 455-467, July.
    14. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.
    15. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    16. Olafsson, Anton Stahl & Nielsen, Thomas Sick & Carstensen, Trine Agervig, 2016. "Cycling in multimodal transport behaviours: Exploring modality styles in the Danish population," Journal of Transport Geography, Elsevier, vol. 52(C), pages 123-130.
    17. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    18. Heinen, Eva & Chatterjee, Kiron, 2015. "The same mode again? An exploration of mode choice variability in Great Britain using the National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 266-282.
    19. Miao, Qing & Welch, Eric W. & Sriraj, P.S., 2019. "Extreme weather, public transport ridership and moderating effect of bus stop shelters," Journal of Transport Geography, Elsevier, vol. 74(C), pages 125-133.
    20. Vij, Akshay, 2013. "Incorporating the Influence of Latent Modal Preferences in Travel Demand Models," University of California Transportation Center, Working Papers qt7nq9p0cv, University of California Transportation Center.
    21. Lars Böcker & Martin Dijst & Jan Prillwitz, 2013. "Impact of Everyday Weather on Individual Daily Travel Behaviours in Perspective: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 71-91, January.
    22. Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2015. "The influence of weather characteristics variability on individual’s travel mode choice in different seasons and regions in Sweden," Transport Policy, Elsevier, vol. 41(C), pages 147-158.
    23. Böcker, Lars & Prillwitz, Jan & Dijst, Martin, 2013. "Climate change impacts on mode choices and travelled distances: a comparison of present with 2050 weather conditions for the Randstad Holland," Journal of Transport Geography, Elsevier, vol. 28(C), pages 176-185.
    24. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    25. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    26. Keskisaari, Ville & Ottelin, Juudit & Heinonen, Jukka, 2017. "Greenhouse gas impacts of different modality style classes using latent class travel behavior model," Journal of Transport Geography, Elsevier, vol. 65(C), pages 155-164.
    27. Vij, Akshay & Carrel, André & Walker, Joan L., 2013. "Incorporating the influence of latent modal preferences on travel mode choice behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 164-178.
    28. Khattak, Asad J. & De Palma, André, 1997. "The impact of adverse weather conditions on the propensity to change travel decisions: A survey of Brussels commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(3), pages 181-203, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lihong & Liu, Yan & Lieske, Scott N. & Corcoran, Jonathan, 2022. "Using modality styles to understand cycling dissonance: The role of the street-scale environment in commuters' travel mode choice," Journal of Transport Geography, Elsevier, vol. 103(C).
    2. Lixun Liu & Yujiang Wang & Robin Hickman, 2023. "How Rail Transit Makes a Difference in People’s Multimodal Travel Behaviours: An Analysis with the XGBoost Method," Land, MDPI, vol. 12(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Zhang, Lihong & Liu, Yan & Lieske, Scott N. & Corcoran, Jonathan, 2022. "Using modality styles to understand cycling dissonance: The role of the street-scale environment in commuters' travel mode choice," Journal of Transport Geography, Elsevier, vol. 103(C).
    3. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "Normative beliefs and modality styles: a latent class and latent variable model of travel behaviour," Transportation, Springer, vol. 45(3), pages 789-825, May.
    4. Wessel, Jan, 2020. "Using weather forecasts to forecast whether bikes are used," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 537-559.
    5. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    6. Klinger, Thomas, 2017. "Moving from monomodality to multimodality? Changes in mode choice of new residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 221-237.
    7. Yang, Xiaobao & Yue, Xianfei & Sun, Huijun & Gao, Ziyou & Wang, Wencheng, 2021. "Impact of weather on freeway origin-destination volume in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 30-47.
    8. Lu, Ying & Prato, Carlo G. & Sipe, Neil & Kimpton, Anthony & Corcoran, Jonathan, 2022. "The role of household modality style in first and last mile travel mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 95-109.
    9. Groth, Sören, 2019. "Multimodal divide: Reproduction of transport poverty in smart mobility trends," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 56-71.
    10. Shamshiripour, Ali & Rahimi, Ehsan & (Kouros) Mohammadian, Abolfazl & Auld, Joshua, 2020. "Investigating the influence of latent lifestyles on productive travels: Insights into designing autonomous transit system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 469-484.
    11. Ton, Danique & Bekhor, Shlomo & Cats, Oded & Duives, Dorine C. & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2020. "The experienced mode choice set and its determinants: Commuting trips in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 744-758.
    12. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    13. Große, Juliane & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Fertner, Christian, 2018. "Exploring the role of daily “modality styles” and urban structure in holidays and longer weekend trips: Travel behaviour of urban and peri-urban residents in Greater Copenhagen," Journal of Transport Geography, Elsevier, vol. 69(C), pages 138-149.
    14. Chengxi Liu & Yusak O. Susilo & Anders Karlström, 2017. "Weather variability and travel behaviour – what we know and what we do not know," Transport Reviews, Taylor & Francis Journals, vol. 37(6), pages 715-741, November.
    15. Yongsung Lee & Giovanni Circella & Patricia L. Mokhtarian & Subhrajit Guhathakurta, 2020. "Are millennials more multimodal? A latent-class cluster analysis with attitudes and preferences among millennial and Generation X commuters in California," Transportation, Springer, vol. 47(5), pages 2505-2528, October.
    16. Bean, Richard & Pojani, Dorina & Corcoran, Jonathan, 2021. "How does weather affect bikeshare use? A comparative analysis of forty cities across climate zones," Journal of Transport Geography, Elsevier, vol. 95(C).
    17. Timmer, Sebastian & Bösehans, Gustav & Henkel, Sven, 2023. "Behavioural norms or personal gains? – An empirical analysis of commuters‘ intention to switch to multimodal mobility behaviour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    18. Vij, Akshay & Gorripaty, Sreeta & Walker, Joan L., 2017. "From trend spotting to trend ’splaining: Understanding modal preference shifts in the San Francisco Bay Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 238-258.
    19. Lu, Ying & Prato, Carlo G. & Corcoran, Jonathan, 2021. "Disentangling the behavioural side of the first and last mile problem: the role of modality style and the built environment," Journal of Transport Geography, Elsevier, vol. 91(C).
    20. Molin, Eric & Mokhtarian, Patricia & Kroesen, Maarten, 2016. "Multimodal travel groups and attitudes: A latent class cluster analysis of Dutch travelers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 83(C), pages 14-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:162:y:2022:i:c:p:282-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.