IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v17y2010i1p47-49.html
   My bibliography  Save this article

Toward a global low carbon fuel standard

Author

Listed:
  • Sperling, Daniel
  • Yeh, Sonia

Abstract

A new policy instrument, known as a low carbon fuel standard (LCFS), is a promising approach to decarbonize transportation fuels. An LCFS has several important features: it applies a lifecycle carbon intensity standard, incorporates market mechanisms by allowing credit trading and targets all transport fuels. A harmonized international framework is needed that builds on newly enacted LCFS policies adopted in California and the European Union.

Suggested Citation

  • Sperling, Daniel & Yeh, Sonia, 2010. "Toward a global low carbon fuel standard," Transport Policy, Elsevier, vol. 17(1), pages 47-49, January.
  • Handle: RePEc:eee:trapol:v:17:y:2010:i:1:p:47-49
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(09)00099-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    2. Robert N. Stavins, 2008. "Addressing climate change with a comprehensive US cap-and-trade system," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 298-321, Summer.
    3. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    2. Plevin, Richard J. & Delucchi, Mark A. & O’Hare, Michael, 2017. "Fuel carbon intensity standards may not mitigate climate change," Energy Policy, Elsevier, vol. 105(C), pages 93-97.
    3. Barbe, Andre, 2016. "The Effects of Restricting Coal Consumption," Conference papers 332698, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    5. Liepold, Constanze & Fabianek, Paul & Madlener, Reinhard, 2024. "A critical evaluation of the 2022 greenhouse gas mitigation quota in Germany from an environmental economics and policy perspective," Energy Policy, Elsevier, vol. 191(C).
    6. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    7. Škare, Marinko & Gavurova, Beata & Porada-Rochon, Malgorzata, 2024. "Digitalization and carbon footprint: Building a path to a sustainable economic growth," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    8. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    9. Yang, Christopher, 2013. "Fuel electricity and plug-in electric vehicles in a low carbon fuel standard," Energy Policy, Elsevier, vol. 56(C), pages 51-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    2. Stephen P. Holland, 2009. "Taxes and Trading versus Intensity Standards: Second-Best Environmental Policies with Incomplete Regulation (Leakage) or Market Power," NBER Working Papers 15262, National Bureau of Economic Research, Inc.
    3. John DeCicco, 2012. "Biofuels and carbon management," Climatic Change, Springer, vol. 111(3), pages 627-640, April.
    4. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    5. Böhringer, Christoph & Garcia-Muros, Xaquin & Gonzalez-Eguino, Mikel & Rey, Luis, 2017. "US climate policy: A critical assessment of intensity standards," Energy Economics, Elsevier, vol. 68(S1), pages 125-135.
    6. John A. Mathews, 2020. "Schumpeterian economic dynamics of greening: propagation of green eco-platforms," Journal of Evolutionary Economics, Springer, vol. 30(4), pages 929-948, September.
    7. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    8. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    9. Drabik, Dusan & de Gorter, Harry & Just, David R., 2010. "The Implications of Alternative Biofuel Policies on Carbon Leakage," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 102689, Agricultural and Applied Economics Association.
    10. Raymond Markey & Joseph McIvor & Martin O’Brien & Chris F Wright, 2021. "Triggering business responses to climate policy in Australia," Australian Journal of Management, Australian School of Business, vol. 46(2), pages 248-271, May.
    11. Becker, Jonathon M., 2021. "General equilibrium impacts on the U.S. economy of a disruption to Chinese cobalt supply," Resources Policy, Elsevier, vol. 71(C).
    12. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    13. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    14. Christoph Böhringer & Carolyn Fischer & Nicholas Rivers, 2023. "Intensity-Based Rebating of Emission Pricing Revenues," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(4), pages 1059-1089.
    15. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    16. Nill, Jan & Kemp, Ren, 2009. "Evolutionary approaches for sustainable innovation policies: From niche to paradigm?," Research Policy, Elsevier, vol. 38(4), pages 668-680, May.
    17. Noel, Michael D. & Roach, Travis, 2017. "Marginal reductions in vehicle emissions under a dual-blend ethanol mandate: Evidence from a natural experiment," Energy Economics, Elsevier, vol. 64(C), pages 45-54.
    18. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    19. Krüger, Timmo, 2017. "Conflicts over carbon capture and storage in international climate governance," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 100(1), pages 58-67.
    20. Biung†Ghi Ju & Juan D. Moreno†Ternero, 2017. "Fair Allocation Of Disputed Properties," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1279-1301, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:17:y:2010:i:1:p:47-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.