IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v14y2007i2p124-138.html
   My bibliography  Save this article

Trade-offs between vehicular and pedestrian traffic using micro-simulation methods

Author

Listed:
  • Ishaque, Muhammad Moazzam
  • Noland, Robert B.

Abstract

A simple hypothetical network is analysed using the VISSIM micro-simulation model to study the effects of signal cycle timings on delay and travel time costs for both vehicles and pedestrians in various pedestrian phasing scenarios. To examine cost trade-offs between pedestrians and vehicles various multi-attribute weighting criteria are applied to different components of travel delay using relative values of time. Results show that the policy selection when considering pedestrians may differ from that when just considering vehicular traffic, which is currently standard practice. The multi-criteria analysis approach developed here makes it possible to optimise network performance and costs across all modes of travel.

Suggested Citation

  • Ishaque, Muhammad Moazzam & Noland, Robert B., 2007. "Trade-offs between vehicular and pedestrian traffic using micro-simulation methods," Transport Policy, Elsevier, vol. 14(2), pages 124-138, March.
  • Handle: RePEc:eee:trapol:v:14:y:2007:i:2:p:124-138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967-070X(06)00082-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wardman, Mark, 2004. "Public transport values of time," Transport Policy, Elsevier, vol. 11(4), pages 363-377, October.
    2. Brilon, Werner, 1994. "Traffic engineering and the new German highway capacity manual," Transportation Research Part A: Policy and Practice, Elsevier, vol. 28(6), pages 469-481, November.
    3. Wardman, Mark & Hatfield, Richard & Page, Matthew, 1997. "The UK national cycling strategy: can improved facilities meet the targets?," Transport Policy, Elsevier, vol. 4(2), pages 123-133, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang & Sun, Jian-Qiao, 2014. "Effect of interactions between vehicles and pedestrians on fuel consumption and emissions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 661-675.
    2. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of vehicle–pedestrian interaction and speed limit on traffic performance of intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 335-347.
    3. Farzaneh Montazeri & Fausto Errico & Luc Pellecuer, 2022. "Comparison of the Performance of Hybrid Traffic Signal Patterns and Conventional Alternatives When Accounting for Both Pedestrians and Vehicles," Sustainability, MDPI, vol. 14(20), pages 1-33, October.
    4. Nam Seok Kim & Seung Sub Yoon & Donghyung Yook, 2017. "Performance comparison between pedestrian push-button and pre-timed pedestrian crossings at midblock: a Korean case study," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(6), pages 706-721, August.
    5. Fadyushin Alexey & Zakharov Dmitrii, 2020. "Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    6. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    7. Biao Yin & Monica Menendez & Kaidi Yang, 2021. "Joint Optimization of Intersection Control and Trajectory Planning Accounting for Pedestrians in a Connected and Automated Vehicle Environment," Sustainability, MDPI, vol. 13(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    2. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    3. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    4. Tao, Xuezong & Zhu, Lichao, 2020. "Meta-analysis of value of time in freight transportation: A comprehensive review based on discrete choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 213-233.
    5. Al-Ayyash, Zahwa & Abou-Zeid, Maya & Kaysi, Isam, 2016. "Modeling the demand for a shared-ride taxi service: An application to an organization-based context," Transport Policy, Elsevier, vol. 48(C), pages 169-182.
    6. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    7. Krčál, Ondřej & Peer, Stefanie & Staněk, Rostislav & Karlínová, Bára, 2019. "Real consequences matter: Why hypothetical biases in the valuation of time persist even in controlled lab experiments," Economics of Transportation, Elsevier, vol. 20(C).
    8. Pezoa, Raúl & Basso, Franco & Quilodrán, Paulina & Varas, Mauricio, 2023. "Estimation of trip purposes in public transport during the COVID-19 pandemic: The case of Santiago, Chile," Journal of Transport Geography, Elsevier, vol. 109(C).
    9. Beaudoin, Justin & Lin Lawell, C.-Y. Cynthia, 2018. "The effects of public transit supply on the demand for automobile travel," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 447-467.
    10. Junya Kumagai & Mihoko Wakamatsu & Shunsuke Managi, 2021. "Do commuters adapt to in-vehicle crowding on trains?," Transportation, Springer, vol. 48(5), pages 2357-2399, October.
    11. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    12. Hartleb, J. & Schmidt, M.E. & Friedrich, M. & Huisman, D., 2019. "A good or a bad timetable: Do different evaluation functions agree?," ERIM Report Series Research in Management ERS-2019-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Becker, Henrik & Becker, Felix & Abe, Ryosuke & Bekhor, Shlomo & Belgiawan, Prawira F. & Compostella, Junia & Frazzoli, Emilio & Fulton, Lewis M. & Guggisberg Bicudo, Davi & Murthy Gurumurthy, Krishna, 2020. "Impact of vehicle automation and electric propulsion on production costs for mobility services worldwide," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 105-126.
    14. Yusuke Kono & Kenetsu Uchida & Katia Andrade, 2014. "Economical welfare maximisation analysis: assessing the use of existing Park-and-Ride services," Transportation, Springer, vol. 41(4), pages 839-854, July.
    15. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    16. Gwilliam, Ken, 2008. "A review of issues in transit economics," Research in Transportation Economics, Elsevier, vol. 23(1), pages 4-22, January.
    17. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    18. Santoso, Djoen San & Yajima, Masaru & Sakamoto, Kunihiro & Kubota, Hisashi, 2012. "Opportunities and strategies for increasing bus ridership in rural Japan: A case study of Hidaka City," Transport Policy, Elsevier, vol. 24(C), pages 320-329.
    19. Monchambert, Guillaume & de Palma, André, 2014. "Public transport reliability and commuter strategy," Journal of Urban Economics, Elsevier, vol. 81(C), pages 14-29.
    20. Börjesson, Maria, 2014. "Forecasting demand for high speed rail," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 81-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:14:y:2007:i:2:p:124-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.