IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v148y2024icp92-106.html
   My bibliography  Save this article

Developing an agent-based microsimulation for predicting the Bus Rapid Transit (BRT) demand in developing countries: A case study of Dhaka, Bangladesh

Author

Listed:
  • Zannat, Khatun E.
  • Laudan, Janek
  • Choudhury, Charisma F.
  • Hess, Stephane

Abstract

Bus Rapid Transit (BRT) has been widely recognised as an affordable and effective mass transport system that can solve various mobility issues in countries that are unable to afford rail-based mass transit options. However, it is extremely challenging to predict the demand for the first BRT service in a city of a developing country with a weak public transport system using aggregate models, given the radical difference in the level of service between the BRT and the existing modes. Further, there can be substantial changes in the activity and travel patterns in a city after the introduction of the BRT which simpler disaggregate level analysis tools are unable to predict. Agent-based simulation tools, which are the state-of-the-art tools for simulating complex travel behaviour, are hence more appropriate for predicting the network conditions after the introduction of a new BRT system. But the application of such simulation tools has been primarily limited to developed countries where the transport landscape and the travel behaviour are very different from the developing countries. To address this gap, this paper presents a demand forecasting model for BRT and integrates it into an activity-based micro-simulation tool in the context of Dhaka, the capital of Bangladesh and one of the fastest growing megacities in the world. The model was developed based on an existing multi-agent, activity-based, travel demand simulator (MATSim). The MATSim implementation in the context of Dhaka focused on two aspects: (1) implementing behaviour models in MATSim to reflect the mode choice in the presence of the proposed BRT (2) integrating multiple data sources (including stated-preference data) for calibrating the mode choice and other components of MATSim to realistically mimic the travel behaviour in the city. Once calibrated, different access scenarios for BRT were simulated using MATSim, and the sensitivity of the outputs to different modelling assumptions is tested. Results from the simulation showed that the marginal utility of travel time, travel cost, and pricing structure of BRT significantly influenced BRT travel demands. Also, BRT demand was found to be the highest (25% of the total trips) in the scenario with multi-modal access/egress connections. While such direct model outputs presented in this paper will be useful for the planners to maximise the ridership of the proposed BRT, the calibrated simulator will be also useful for the evaluation of other innovative transport modes in the context of Dhaka in the future.

Suggested Citation

  • Zannat, Khatun E. & Laudan, Janek & Choudhury, Charisma F. & Hess, Stephane, 2024. "Developing an agent-based microsimulation for predicting the Bus Rapid Transit (BRT) demand in developing countries: A case study of Dhaka, Bangladesh," Transport Policy, Elsevier, vol. 148(C), pages 92-106.
  • Handle: RePEc:eee:trapol:v:148:y:2024:i:c:p:92-106
    DOI: 10.1016/j.tranpol.2023.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X23003426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2023.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:148:y:2024:i:c:p:92-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.