IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v45y2011i1p31-45.html
   My bibliography  Save this article

Modeling a rail transit alignment considering different objectives

Author

Listed:
  • Samanta, Sutapa
  • Jha, Manoj K.

Abstract

An optimization model for station locations for an on-ground rail transit line is developed using different objective functions of demand and cost as both influence the planning of a rail transit alignment. A microscopic analysis is performed to develop a rail transit alignment in a given corridor considering a many-to-one travel demand pattern. A variable demand case is considered as it replicates a realistic scenario for planning a rail transit line. A Genetic Algorithm (GA) based on a Geographical Information System (GIS) database is developed to optimize the station locations for a rail transit alignment. The first objective is to minimize the total system cost per person, which is a function of user cost, operator cost, and location cost. The second objective is to maximize the ridership or the service coverage of the rail transit alignment. The user cost per person is minimized separately as the third objective because the user cost is one of the most important decision-making factors for planning a transit system from the users' perspective. A transit planner can make an informed decision between various alternatives based on the results obtained using different objective functions. The model is applied in a case study in the Washington, DC area. The optimal locations and sequence of stations obtained using the three objective functions are presented and a comparative study between the results obtained is shown in the paper. In future works we will develop a combinatorial optimization problem using the aforementioned objectives for the rail transit alignment planning and design problem.

Suggested Citation

  • Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.
  • Handle: RePEc:eee:transa:v:45:y:2011:i:1:p:31-45
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(10)00137-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Fang & Zeng, Xiaogang, 2008. "Optimization of transit route network, vehicle headways and timetables for large-scale transit networks," European Journal of Operational Research, Elsevier, vol. 186(2), pages 841-855, April.
    2. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    3. Steven I. Chien * & Zhaoqiong Qin, 2004. "Optimization of bus stop locations for improving transit accessibility," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(3), pages 211-227, June.
    4. S. C. Wirasinghe & Nadia S. Ghoneim, 1981. "Spacing of Bus-Stops for Many to Many Travel Demand," Transportation Science, INFORMS, vol. 15(3), pages 210-221, August.
    5. Shinya Kikuchi & Vukan R. Vuchic, 1982. "Transit Vehicle Stopping Regimes and Spacings," Transportation Science, INFORMS, vol. 16(3), pages 311-331, August.
    6. S. C. Wirasinghe & P. N. Seneviratne, 1986. "Rail Line Length in an Urban Transportation Corridor," Transportation Science, INFORMS, vol. 20(4), pages 237-245, November.
    7. Bruno, Giuseppe & Ghiani, Gianpaolo & Improta, Gennaro, 1998. "A multi-modal approach to the location of a rapid transit line," European Journal of Operational Research, Elsevier, vol. 104(2), pages 321-332, January.
    8. Vukan R. Vuchic & Gordon F. Newell, 1968. "Rapid Transit Interstation Spacings for Minimum Travel Time," Transportation Science, INFORMS, vol. 2(4), pages 303-339, November.
    9. Mark Horner & Tony Grubesic, 2001. "A GIS-based planning approach to locating urban rail terminals," Transportation, Springer, vol. 28(1), pages 55-77, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Wangtu & Lin, Weihua, 2016. "Selecting the public transit projects with PCA-DP technique: The example of Xiamen City," Transport Policy, Elsevier, vol. 46(C), pages 56-71.
    2. Simic, Vladimir & Gokasar, Ilgin & Deveci, Muhammet & Karakurt, Ahmet, 2022. "An integrated CRITIC and MABAC based type-2 neutrosophic model for public transportation pricing system selection," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    4. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.
    5. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    6. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Sumalee, A., 2012. "Design of a rail transit line for profit maximization in a linear transportation corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 50-70.
    2. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    3. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    4. Prasanta K. Sahu & Babak Mehran & Surya P. Mahapatra & Satish Sharma, 2021. "Spatial data analysis approach for network-wide consolidation of bus stop locations," Public Transport, Springer, vol. 13(2), pages 375-394, June.
    5. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    6. Daganzo, Carlos F., 2009. "Structure of Competitive Transit Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5sj7r3c7, Institute of Transportation Studies, UC Berkeley.
    7. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    8. Amir Khakbaz & Ali Nookabadi & S. Shetab-bushehri, 2013. "A Model for Locating Park-and-Ride Facilities on Urban Networks Based on Maximizing Flow Capture: A Case Study of Isfahan, Iran," Networks and Spatial Economics, Springer, vol. 13(1), pages 43-66, March.
    9. Zhao, Xinwei & Chen, Peng & Jiao, Junfeng & Chen, Xiaohong & Bischak, Chris, 2019. "How does ‘park and ride’ perform? An evaluation using longitudinal data," Transport Policy, Elsevier, vol. 74(C), pages 15-23.
    10. Gang Cheng & Shuzhi Zhao & Tao Zhang, 2019. "A Bi-Level Programming Model for Optimal Bus Stop Spacing of a Bus Rapid Transit System," Mathematics, MDPI, vol. 7(7), pages 1-14, July.
    11. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    12. Daganzo, Carlos F, 2009. "Structure of Competitive Transit Networks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt17s3b266, Institute of Transportation Studies, UC Berkeley.
    13. Ceder, Avishai (Avi) & Butcher, Matthew & Wang, Lingli, 2015. "Optimization of bus stop placement for routes on uneven topography," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 40-61.
    14. José Moura & Borja Alonso & Ángel Ibeas & Francisco Ruisánchez, 2012. "A Two-Stage Urban Bus Stop Location Model," Networks and Spatial Economics, Springer, vol. 12(3), pages 403-420, September.
    15. Luigi Moccia & Duncan W. Allen & Gilbert Laporte & Andrea Spinosa, 2022. "Mode boundaries of automated metro and semi-rapid rail in urban transit," Public Transport, Springer, vol. 14(3), pages 739-802, October.
    16. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Choi, Keechoo, 2012. "Modeling the effects of integrated rail and property development on the design of rail line services in a linear monocentric city," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 710-728.
    17. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    18. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    19. Holguı´n-Veras, José & Yushimito, Wilfredo F. & Aros-Vera, Felipe & Reilly, John (Jack), 2012. "User rationality and optimal park-and-ride location under potential demand maximization," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 949-970.
    20. Changshan Wu & Alan T Murray, 2005. "Optimizing Public Transit Quality and System Access: The Multiple-Route, Maximal Covering/Shortest-Path Problem," Environment and Planning B, , vol. 32(2), pages 163-178, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:1:p:31-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.