IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v20y1986i4p237-245.html
   My bibliography  Save this article

Rail Line Length in an Urban Transportation Corridor

Author

Listed:
  • S. C. Wirasinghe

    (The University of Calgary, Calgary, Alberta, Canada T2N 1N4)

  • P. N. Seneviratne

    (The University of Calgary, Calgary, Alberta, Canada T2N 1N4)

Abstract

The length of a rail line that will minimize total transportation (user and operator) costs, and the threshold demand necessary to ensure that the resulting length of the rail line is nonzero are investigated for an urban transportation corridor. A density of demand for travel to the central business district (CBD) represented by a general function P ( x ) passengers per unit length of the corridor where x is the distance from the CBD is considered. The line-cost as a function of x , the costs of the rail fleet, rail and bus operating costs and passenger time costs are also considered in the formulation. The fleet size is formulated considering the peaking of demand relative to time. When the line cost is nonuniform there could be several line lengths at which the total transportation cost is minimized or even maximized locally. When the line cost per unit length is uniform, a minimum transport cost rail line of nonzero length exists only if the net gain in travel time and operating cost of transporting the total ridership a unit distance by rail, when compared to bus, exceeds the marginal line and fleet costs per unit length. In either case, the minimum transport cost rail line length can be determined easily. The effects on the line length of shifts in demand are investigated. Closed-form solutions for the line length are obtained for the cases of sectorial and rectangular corridor-sheds with uniformly distributed demand per unit area.

Suggested Citation

  • S. C. Wirasinghe & P. N. Seneviratne, 1986. "Rail Line Length in an Urban Transportation Corridor," Transportation Science, INFORMS, vol. 20(4), pages 237-245, November.
  • Handle: RePEc:inm:ortrsc:v:20:y:1986:i:4:p:237-245
    DOI: 10.1287/trsc.20.4.237
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.20.4.237
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.20.4.237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenbao Wang & Sicheng Wang & Haitao Lian, 2021. "A route-planning method for long-distance commuter express bus service based on OD estimation from mobile phone location data: the case of the Changping Corridor in Beijing," Public Transport, Springer, vol. 13(1), pages 101-125, March.
    2. Bracaglia, Valentina & D'Alfonso, Tiziana & Nastasi, Alberto & Sheng, Dian & Wan, Yulai & Zhang, Anming, 2020. "High-speed rail networks, capacity investments and social welfare," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 308-323.
    3. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    4. Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.
    5. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Sumalee, A., 2012. "Design of a rail transit line for profit maximization in a linear transportation corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 50-70.
    6. Sang, Jinyan & Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2019. "Design of build-operate-transfer contract for integrated rail and property development with uncertainty in future urban population," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 36-66.
    7. Chen, Jingxu & Liu, Zhiyuan & Wang, Shuaian & Chen, Xuewu, 2018. "Continuum approximation modeling of transit network design considering local route service and short-turn strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 165-188.
    8. Wang, David Z.W. & Lo, Hong K., 2016. "Financial sustainability of rail transit service: The effect of urban development pattern," Transport Policy, Elsevier, vol. 48(C), pages 23-33.
    9. R. S. Thilakaratne & S. C. Wirasinghe, 2016. "Implementation of Bus Rapid Transit (BRT) on an optimal segment of a long regular bus route," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(1), pages 15-29, March.
    10. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Choi, Keechoo, 2012. "Modeling the effects of integrated rail and property development on the design of rail line services in a linear monocentric city," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 710-728.
    11. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    12. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    13. Wu, Fei & Schonfeld, Paul, 2022. "Optimized two-directional phased development of a rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 424-447.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:20:y:1986:i:4:p:237-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.