IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v175y2023ics0965856423001830.html
   My bibliography  Save this article

Where to park an autonomous vehicle? Results of a stated choice experiment

Author

Listed:
  • Tian, Zhihui
  • Feng, Tao
  • Yao, Baozhen
  • Hu, Yan
  • Zhang, Jing

Abstract

The future innovation and growing popularity of autonomous vehicles have the potential to significantly impact the spatiotemporal distribution of parking demand. However, little knowledge is gained on how people will choose to park their autonomous cars. In principle, an autonomous vehicle is not necessarily parked close by like traditional vehicles leveraging the automated driving and parking capability, still, the decision made by people is important for policymakers in urban and transportation planning. This study attempts to gain useful insights to understand people’s parking location choices for autonomous vehicles. A stated choice experiment was designed, allowing people to choose a parking location for autonomous vehicles in varied contexts, including time windows, picking-up times, and the requirement for on-time arrival at the next activity. We found that similar to conventional cars people generally prefer cheaper and/or closer parking lots for autonomous vehicles. However, the distance between a parking lot and the activity location is relatively longer in the case of autonomous vehicles. The amount of time an autonomous vehicle spends in congestion while picking up the users influences the choice of parking locations. Moreover, substantial preference heterogeneity between individual people was found in the parking choice behavior. The maximum value of access time for autonomous cars is 34 $/h which is higher than the empirical value of walking time for conventional cars. Results of elasticity indicate that the influence of parking fees is larger than that of access time and congestion time.

Suggested Citation

  • Tian, Zhihui & Feng, Tao & Yao, Baozhen & Hu, Yan & Zhang, Jing, 2023. "Where to park an autonomous vehicle? Results of a stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001830
    DOI: 10.1016/j.tra.2023.103763
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lambe, Thomas A., 1996. "Driver choice of parking in the city," Socio-Economic Planning Sciences, Elsevier, vol. 30(3), pages 207-219, September.
    2. Soto, Jose J. & Márquez, Luis & Macea, Luis F., 2018. "Accounting for attitudes on parking choice: An integrated choice and latent variable approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 65-77.
    3. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    4. Ibeas, A. & dell’Olio, L. & Bordagaray, M. & Ortúzar, J. de D., 2014. "Modelling parking choices considering user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 41-49.
    5. Jia Guo & Tao Feng & Harry J. P. Timmermans, 2020. "Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model," Transportation, Springer, vol. 47(2), pages 911-933, April.
    6. Chaniotakis, Emmanouil & Pel, Adam J., 2015. "Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 228-239.
    7. Gaofeng Gu & Tao Feng & Dujuan Yang & Harry Timmermans, 2021. "Modeling dynamics in household car ownership over life courses: a latent class competing risks model," Transportation, Springer, vol. 48(2), pages 809-829, April.
    8. Shoup, Donald C., 2006. "Cruising for Parking," University of California Transportation Center, Working Papers qt55s7079f, University of California Transportation Center.
    9. Ahmadi Azari, Kian & Arintono, Sulistyo & Hamid, Hussain & Rahmat, Riza Atiq O.K., 2013. "Modelling demand under parking and cordon pricing policy," Transport Policy, Elsevier, vol. 25(C), pages 1-9.
    10. Hensher, David A. & King, Jenny, 2001. "Parking demand and responsiveness to supply, pricing and location in the Sydney central business district," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(3), pages 177-196, March.
    11. Martin, Elliot W & Shaheen, Susan A, 2011. "Greenhouse Gas Emission Impacts of Carsharing in North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6wr90040, Institute of Transportation Studies, UC Berkeley.
    12. Anderson, Christopher M. & Das, Chhandita & Tyrrell, Timothy J., 2006. "Parking preferences among tourists in Newport, Rhode Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 334-353, May.
    13. Zakharenko, Roman, 2016. "Self-driving cars will change cities," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 26-37.
    14. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Rodríguez & Luigi dell’Olio & José Luis Moura & Borja Alonso & Rubén Cordera, 2023. "Modelling Parking Choice Behaviour Considering Alternative Availability and Systematic and Random Variations in User Tastes," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    2. Geva, Sharon & Fulman, Nir & Ben-Elia, Eran, 2022. "Getting the prices right: Drivers' cruising choices in a serious parking game," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 54-75.
    3. Antolín, Gonzalo & Ibeas, Ángel & Alonso, Borja & dell'Olio, Luigi, 2018. "Modelling parking behaviour considering users heterogeneities," Transport Policy, Elsevier, vol. 67(C), pages 23-30.
    4. Soto, Jose J. & Márquez, Luis & Macea, Luis F., 2018. "Accounting for attitudes on parking choice: An integrated choice and latent variable approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 65-77.
    5. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    6. Yan, Xiang & Levine, Jonathan & Marans, Robert, 2019. "The effectiveness of parking policies to reduce parking demand pressure and car use," Transport Policy, Elsevier, vol. 73(C), pages 41-50.
    7. José Javier Soto Martínez & Luis Gabriel Márquez Díaz & Luis Fernando Macea Mercado, 2018. "Preferencias sobre alternativas de estacionamiento en Cartagena: ¿cuánto están dispuestos a pagar los conductores?," Documentos de Trabajo 018327, Universidad Tecnológica de Bolívar.
    8. José Javier Soto Martínez & Luis Gabriel Márquez Díaz & Luis Fernando Macea Mercado, 2018. "Preferencias sobre alternativas de estacionamiento en Cartagena: ¿Cuánto están dispuestos a pagar los conductores?," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 12(2), pages 163-180, December.
    9. Chaniotakis, Emmanouil & Pel, Adam J., 2015. "Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 228-239.
    10. Wang, Hao & Li, Ruimin & Wang, Xiaokun (Cara) & Shang, Pan, 2020. "Effect of on-street parking pricing policies on parking characteristics: A case study of Nanning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 65-78.
    11. José Javier Soto Martínez & Luis Gabriel Márquez Díaz & Luis Fernando Macea Mercado, 2018. "Preferencias sobre alternativas de estacionamiento en Cartagena: ¿cuánto están dispuestos a pagar los conductores?," Documentos de Trabajo 018277, Universidad Tecnológica de Bolívar.
    12. Jun Li & Sifan Wu & Xiaoman Feng, 2021. "Optimization of On-Street Parking Charges Based on Price Elasticity of the Expected Perceived Parking Cost," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    13. Caicedo, Felix & Diaz, Alejandra, 2013. "Case analysis of simultaneous concessions of parking meters and underground parking facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 358-378.
    14. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    15. Tian, Qiong & Yang, Li & Wang, Chenlan & Huang, Hai-Jun, 2018. "Dynamic pricing for reservation-based parking system: A revenue management method," Transport Policy, Elsevier, vol. 71(C), pages 36-44.
    16. Lu, Xiao-Shan & Huang, Hai-Jun & Guo, Ren-Yong & Xiong, Fen, 2021. "Linear location-dependent parking fees and integrated daily commuting patterns with late arrival and early departure in a linear city," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 293-322.
    17. Inci, Eren, 2015. "A review of the economics of parking," Economics of Transportation, Elsevier, vol. 4(1), pages 50-63.
    18. Lane, Bradley W., 2019. "Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport," Journal of Transport Geography, Elsevier, vol. 81(C).
    19. Arnott, Richard & Rowse, John, 2013. "Curbside parking time limits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 89-110.
    20. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.