IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v209y2024ics0040162524005717.html
   My bibliography  Save this article

Bringing employee learning to AI stress research: A moderated mediation model

Author

Listed:
  • Zhou, Qiwei
  • Chen, Keyu
  • Cheng, Shuang

Abstract

While a substantial portion of the literature characterizes artificial intelligence (AI) stress as a hindrance, our focus diverges by probing employee learning as an active response to this challenge. We highlight the role of employee knowledge and skills development amidst an enterprise's digital transformation. Drawing on the active learning perspective of the Job Demand-Control model, we investigate why and when AI stress promotes employee learning and subsequent adaptive coping behaviors. We propose that AI stress can create opportunities and resources for employee learning, leading to improved job performance and supportive behavior for digital transformation. Additionally, we examine how employee trust in AI moderates these relationships, finding that higher levels of AI trust are associated with greater use of active learning strategies when faced with AI stress. Our findings, based on a two-wave survey of 224 employees from a motor-vehicle testing company in China, are further supported by post-hoc interview data collected from 32 employees of the same company. Overall, our study contributes to the understanding of AI adoption, digital transformation, and stress learning.

Suggested Citation

  • Zhou, Qiwei & Chen, Keyu & Cheng, Shuang, 2024. "Bringing employee learning to AI stress research: A moderated mediation model," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524005717
    DOI: 10.1016/j.techfore.2024.123773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524005717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohsen Attaran & Sharmin Attaran & Diane Kirkland, 2019. "The Need for Digital Workplace: Increasing Workforce Productivity in the Information Age," International Journal of Enterprise Information Systems (IJEIS), IGI Global, vol. 15(1), pages 1-23, January.
    2. Singh, Pallavi & Bala, Hillol & Dey, Bidit Lal & Filieri, Raffaele, 2022. "Enforced remote working: The impact of digital platform-induced stress and remote working experience on technology exhaustion and subjective wellbeing," Journal of Business Research, Elsevier, vol. 151(C), pages 269-286.
    3. Loureiro, Sandra Maria Correia & Guerreiro, João & Tussyadiah, Iis, 2021. "Artificial intelligence in business: State of the art and future research agenda," Journal of Business Research, Elsevier, vol. 129(C), pages 911-926.
    4. T. S. Ragu-Nathan & Monideepa Tarafdar & Bhanu S. Ragu-Nathan & Qiang Tu, 2008. "The Consequences of Technostress for End Users in Organizations: Conceptual Development and Empirical Validation," Information Systems Research, INFORMS, vol. 19(4), pages 417-433, December.
    5. Haefner, Naomi & Wincent, Joakim & Parida, Vinit & Gassmann, Oliver, 2021. "Artificial intelligence and innovation management: A review, framework, and research agenda✰," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    6. Youngjin Yoo & Richard J. Boland & Kalle Lyytinen & Ann Majchrzak, 2012. "Organizing for Innovation in the Digitized World," Organization Science, INFORMS, vol. 23(5), pages 1398-1408, October.
    7. Dwivedi, Yogesh K. & Hughes, Laurie & Ismagilova, Elvira & Aarts, Gert & Coombs, Crispin & Crick, Tom & Duan, Yanqing & Dwivedi, Rohita & Edwards, John & Eirug, Aled & Galanos, Vassilis & Ilavarasan, , 2021. "Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy," International Journal of Information Management, Elsevier, vol. 57(C).
    8. Brougham, David & Haar, Jarrod, 2018. "Smart Technology, Artificial Intelligence, Robotics, and Algorithms (STARA): Employees’ perceptions of our future workplace," Journal of Management & Organization, Cambridge University Press, vol. 24(2), pages 239-257, March.
    9. Huang, Yingying & Gursoy, Dogan, 2024. "How does AI technology integration affect employees’ proactive service behaviors? A transactional theory of stress perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    10. Cao, Guangming & Duan, Yanqing & Edwards, John S. & Dwivedi, Yogesh K., 2021. "Understanding managers’ attitudes and behavioral intentions towards using artificial intelligence for organizational decision-making," Technovation, Elsevier, vol. 106(C).
    11. Hofstede, Geert, 1994. "The business of international business is culture," International Business Review, Elsevier, vol. 3(1), pages 1-14, March.
    12. Gkinko, Lorentsa & Elbanna, Amany, 2023. "Designing trust: The formation of employees’ trust in conversational AI in the digital workplace," Journal of Business Research, Elsevier, vol. 158(C).
    13. Sandra Maria Correia Loureiro & Ricardo Godinho Bilro & Diogo Neto, 2023. "Working with AI: can stress bring happiness?," Service Business, Springer;Pan-Pacific Business Association, vol. 17(1), pages 233-255, March.
    14. Cheng, Bao & Lin, Hongxia & Kong, Yurou, 2023. "Challenge or hindrance? How and when organizational artificial intelligence adoption influences employee job crafting," Journal of Business Research, Elsevier, vol. 164(C).
    15. Makarius, Erin E. & Mukherjee, Debmalya & Fox, Joseph D. & Fox, Alexa K., 2020. "Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization," Journal of Business Research, Elsevier, vol. 120(C), pages 262-273.
    16. Daniel Belanche & Luis V. Casaló & Carlos Flavián & Jeroen Schepers, 2020. "Service robot implementation: a theoretical framework and research agenda," The Service Industries Journal, Taylor & Francis Journals, vol. 40(3-4), pages 203-225, March.
    17. Borges, Aline F.S. & Laurindo, Fernando J.B. & Spínola, Mauro M. & Gonçalves, Rodrigo F. & Mattos, Claudia A., 2021. "The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions," International Journal of Information Management, Elsevier, vol. 57(C).
    18. Christian Meske & Iris Junglas, 2021. "Investigating the elicitation of employees’ support towards digital workplace transformation," Behaviour and Information Technology, Taylor & Francis Journals, vol. 40(11), pages 1120-1136, August.
    19. repec:hal:gemptp:hal-01249895 is not listed on IDEAS
    20. Füller, Johann & Hutter, Katja & Wahl, Julian & Bilgram, Volker & Tekic, Zeljko, 2022. "How AI revolutionizes innovation management – Perceptions and implementation preferences of AI-based innovators," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    21. Zirar, Araz & Ali, Syed Imran & Islam, Nazrul, 2023. "Worker and workplace Artificial Intelligence (AI) coexistence: Emerging themes and research agenda," Technovation, Elsevier, vol. 124(C).
    22. Bahoo, Salman & Cucculelli, Marco & Qamar, Dawood, 2023. "Artificial intelligence and corporate innovation: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    23. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    24. Chowdhury, Soumyadeb & Budhwar, Pawan & Dey, Prasanta Kumar & Joel-Edgar, Sian & Abadie, Amelie, 2022. "AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework," Journal of Business Research, Elsevier, vol. 144(C), pages 31-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Huilin & Wang, Linhui & Cao, Yutong & Li, Jincheng, 2025. "The impact of artificial intelligence on labor market: A study based on bibliometric analysis," Journal of Asian Economics, Elsevier, vol. 98(C).
    2. Irgang, Luís & Sestino, Andrea & Barth, Henrik & Holmén, Magnus, 2025. "Healthcare workers' adoption of and satisfaction with artificial intelligence: The counterintuitive role of paradoxical tensions and paradoxical mindset," Technological Forecasting and Social Change, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byung-Jik Kim & Julak Lee, 2024. "The mental health implications of artificial intelligence adoption: the crucial role of self-efficacy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    2. Wu, Min & Tsai, Nien En & Koh, Le Yi & Yuen, Kum Fai, 2025. "Maritime AI socialisation: Exploring the impact of digital enablers on human-AI collaboration and service and process innovation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 197(C).
    3. Olimpia Ban & Irina Maiorescu & Mihaela Bucur & Gabriel Cristian Sabou & Betty Cohen Tzedec, 2024. "AI between Threat and Benefactor for the Competences of the Human Working Force," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(67), pages 762-762, August.
    4. Robertson, Jeandri & Botha, Elsamari & Oosthuizen, Kim & Montecchi, Matteo, 2025. "Managing change when integrating artificial intelligence (AI) into the retail value chain: The AI implementation compass," Journal of Business Research, Elsevier, vol. 189(C).
    5. Gao, Yang & Liu, Siqiang & Yang, Lu, 2025. "Artificial intelligence and innovation capability: A dynamic capabilities perspective," International Review of Economics & Finance, Elsevier, vol. 98(C).
    6. Chen, Pengyu & Chu, Zhongzhu & Zhao, Miao, 2024. "The Road to corporate sustainability: The importance of artificial intelligence," Technology in Society, Elsevier, vol. 76(C).
    7. Hoffmann, Stefan & Lasarov, Wassili & Dwivedi, Yogesh K., 2024. "AI-empowered scale development: Testing the potential of ChatGPT," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    8. Irgang, Luís & Sestino, Andrea & Barth, Henrik & Holmén, Magnus, 2025. "Healthcare workers' adoption of and satisfaction with artificial intelligence: The counterintuitive role of paradoxical tensions and paradoxical mindset," Technological Forecasting and Social Change, Elsevier, vol. 212(C).
    9. Zhai, Minhan & Wu, Wenqing & Tsai, Sang-Bing, 2025. "The effects of Artificial intelligence orientation on inefficient investment: Firm-level evidence from China's energy enterprises," Energy Economics, Elsevier, vol. 141(C).
    10. Byung-Jik Kim & Min-Jik Kim & Julak Lee, 2025. "The dark side of artificial intelligence adoption: linking artificial intelligence adoption to employee depression via psychological safety and ethical leadership," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-14, December.
    11. Chowdhury, Soumyadeb & Budhwar, Pawan & Dey, Prasanta Kumar & Joel-Edgar, Sian & Abadie, Amelie, 2022. "AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework," Journal of Business Research, Elsevier, vol. 144(C), pages 31-49.
    12. Zhou, Zhikai & Liu, Dewen & Chen, Zhongjie & Pancho, Martin, 2025. "Government adoption of generative artificial intelligence and ambidextrous innovation," International Review of Economics & Finance, Elsevier, vol. 98(C).
    13. Zhang, Fan & Pan, Jieyi, 2025. "Imitation: Mitigating AI backfire," Journal of Business Research, Elsevier, vol. 193(C).
    14. Ma, Liang & Yu, Peng & Zhang, Xin & Wang, Gaoshan & Hao, Feifei, 2024. "How AI use in organizations contributes to employee competitive advantage: The moderating role of perceived organization support," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    15. Zhang, Haili & Song, Michael & Wang, Yufan, 2023. "Does AI-infused operations capability enhance or impede the relationship between information technology capability and firm performance?," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    16. Ritala, Paavo & Aaltonen, Päivi & Ruokonen, Mika & Nemeh, Andre, 2024. "Developing industrial AI capabilities: An organisational learning perspective," Technovation, Elsevier, vol. 138(C).
    17. Mariani, Marcello M. & Machado, Isa & Magrelli, Vittoria & Dwivedi, Yogesh K., 2023. "Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions," Technovation, Elsevier, vol. 122(C).
    18. Volkmar, Gioia & Fischer, Peter M. & Reinecke, Sven, 2022. "Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management," Journal of Business Research, Elsevier, vol. 149(C), pages 599-614.
    19. Ma, Dechao & Wu, Weiwei, 2024. "Does artificial intelligence drive technology convergence? Evidence from Chinese manufacturing companies," Technology in Society, Elsevier, vol. 79(C).
    20. Janarthanan Balakrishnan & Yogesh K. Dwivedi & Laurie Hughes & Frederic Boy, 2024. "Enablers and Inhibitors of AI-Powered Voice Assistants: A Dual-Factor Approach by Integrating the Status Quo Bias and Technology Acceptance Model," Information Systems Frontiers, Springer, vol. 26(3), pages 921-942, June.

    More about this item

    Keywords

    AI stress; Learning; AI trust; Digital transformation;
    All these keywords.

    JEL classification:

    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General
    • M10 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:209:y:2024:i:c:s0040162524005717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.