IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v82y2022ipas0038012122000283.html
   My bibliography  Save this article

Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages

Author

Listed:
  • Gilani Larimi, Niloofar
  • Azhdari, Abolghasem
  • Ghousi, Rouzbeh
  • Du, Bo

Abstract

As supplying adequate blood in multiple countries has failed due to the Covid-19 pandemic, the importance of redesigning a sensible protective-resilience blood supply chain is underscored. The outbreak-as an extensive disruption-has caused a delay in ordering and delivering blood and its by-products, which leads to severe social and financial loss to healthcare organizations. This paper presents a robust multi-phase optimization approach to model a blood supply network ensuring blood is collected efficiently. We evaluate the effectiveness of the model using real-world data from two mechanisms. Firstly, a Geographic Information System (GIS)-based method is presented to find potential alternative locations for blood donation centers to maximize availability, accessibility, and proximity to blood donors. Then, a protective mathematical model is developed with the incorporation of (a) blood perishability, (b) efficient collation centers, (c) multiple-source of suppliers, (d) back-up centers, (e) capacity limitation, and (f) uncertain demand. Emergency back-up for laboratory centers to supplement and offset the processing plants against the possible disorders is applied in a two-stage stochastic robust optimization model to maximize the level of hospitals' coverage. The results highlight the fraction cost of considering back-up facilities in the total costs and provide more resilient decisions with lower risks by examining resource limitations.

Suggested Citation

  • Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
  • Handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000283
    DOI: 10.1016/j.seps.2022.101250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122000283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jabbarzadeh, Armin & Fahimnia, Behnam & Seuring, Stefan, 2014. "Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 225-244.
    2. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    3. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Dell’Ovo, Marta & Capolongo, Stefano & Oppio, Alessandra, 2018. "Combining spatial analysis with MCDA for the siting of healthcare facilities," Land Use Policy, Elsevier, vol. 76(C), pages 634-644.
    5. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh & Maryam Izadidoost Sheshkol & Seyyed-Nader Shetab-Boushehri, 2019. "A bi-objective integrated model for the uncertain blood network design with raising products quality," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 13(5), pages 553-588.
    7. Özceylan, Eren & Çetinkaya, Cihan & Erbaş, Mehmet & Kabak, Mehmet, 2016. "Logistic performance evaluation of provinces in Turkey: A GIS-based multi-criteria decision analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 323-337.
    8. Andres F. Osorio & Sally C. Brailsford & Honora K. Smith, 2015. "A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7191-7212, December.
    9. Katsaliaki, Korina, 2008. "Cost-effective practices in the blood service sector," Health Policy, Elsevier, vol. 86(2-3), pages 276-287, May.
    10. Fan, Di & Lo, Chris K.Y. & Zhou, Yi, 2021. "Sustainability risk in supply bases: The role of complexity and coupling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    11. Paul, Jomon A. & Wang, Xinfang (Jocelyn), 2019. "Robust location-allocation network design for earthquake preparedness," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 139-155.
    12. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    13. Donya Rahmani, 2019. "Designing a robust and dynamic network for the emergency blood supply chain with the risk of disruptions," Annals of Operations Research, Springer, vol. 283(1), pages 613-641, December.
    14. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    15. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    16. Patra, T. Devi Prasad & Jha, J.K., 2021. "A two-period newsvendor model for prepositioning with a post-disaster replenishment using Bayesian demand update," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    17. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    18. Dursun Delen & Madhav Erraguntla & Richard Mayer & Chang-Nien Wu, 2011. "Better management of blood supply-chain with GIS-based analytics," Annals of Operations Research, Springer, vol. 185(1), pages 181-193, May.
    19. Sara Cheraghi & Seyyed-Mahdi Hosseini-Motlagh, 2020. "Responsive and reliable injured-oriented blood supply chain for disaster relief: a real case study," Annals of Operations Research, Springer, vol. 291(1), pages 129-167, August.
    20. Verikios, George, 2020. "The dynamic effects of infectious disease outbreaks: the case of pandemic influenza and human coronavirus," MPRA Paper 104434, University Library of Munich, Germany.
    21. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    22. Behzad Zahiri & Mir Saman Pishvaee, 2017. "Blood supply chain network design considering blood group compatibility under uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2013-2033, April.
    23. Francesca Maggioni & Stein Wallace, 2012. "Analyzing the quality of the expected value solution in stochastic programming," Annals of Operations Research, Springer, vol. 200(1), pages 37-54, November.
    24. Comber, Alexis & Dickie, Jennifer & Jarvis, Claire & Phillips, Martin & Tansey, Kevin, 2015. "Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply," Applied Energy, Elsevier, vol. 154(C), pages 309-316.
    25. Gilani Larimi, Niloofar & Yaghoubi, Saeed & Hosseini-Motlagh, Seyyed-Mahdi, 2019. "Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    26. Samuel Ratick & Brian Meacham & Yuko Aoyama, 2008. "Locating Backup Facilities to Enhance Supply Chain Disaster Resilience," Growth and Change, Wiley Blackwell, vol. 39(4), pages 642-666, December.
    27. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Cheraghi, Sara, 2020. "Robust and stable flexible blood supply chain network design under motivational initiatives," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    28. M. Barry Dumas & Manus Rabinowitz, 1977. "Policies for Reducing Blood Wastage in Hospital Blood Banks," Management Science, INFORMS, vol. 23(10), pages 1124-1132, June.
    29. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    30. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    31. Hanks, Robert W. & Lunday, Brian J. & Weir, Jeffery D., 2020. "Robust goal programming for multi-objective optimization of data-driven problems: A use case for the United States transportation command's liner rate setting problem," Omega, Elsevier, vol. 90(C).
    32. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamran, Mehdi A. & Kia, Reza & Goodarzian, Fariba & Ghasemi, Peiman, 2023. "A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    2. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    2. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    3. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Seyyed-Mahdi Hosseini-Motlagh & Niloofar Gilani Larimi & Maryam Oveysi Nejad, 2022. "A qualitative, patient-centered perspective toward plasma products supply chain network design with risk controlling," Operational Research, Springer, vol. 22(1), pages 779-824, March.
    5. Tirkolaee, Erfan Babaee & Golpîra, Hêriş & Javanmardan, Ahvan & Maihami, Reza, 2023. "A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    6. Javid Ghahremani-Nahr & Ramez Kian & Ehsan Sabet & Vahid Akbari, 2022. "A bi-objective blood supply chain model under uncertain donation, demand, capacity and cost: a robust possibilistic-necessity approach," Operational Research, Springer, vol. 22(5), pages 4685-4723, November.
    7. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    8. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Sun, Huali & Li, Jiamei & Wang, Tingsong & Xue, Yaofeng, 2022. "A novel scenario-based robust bi-objective optimization model for humanitarian logistics network under risk of disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    10. Mahsa Pouraliakbari-Mamaghani & Ali Ghodratnama & Seyed Hamid Reza Pasandideh & Ahmed Saif, 2022. "A robust possibilistic programming approach for blood supply chain network design in disaster relief considering congestion," Operational Research, Springer, vol. 22(3), pages 1987-2032, July.
    11. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    12. Chua, Geoffrey A. & Senga, Juan Ramon L., 2022. "Blood supply interventions during disasters: Efficiency measures and strategies to mitigate volatility," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    13. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    14. Lowalekar, Harshal & Ravi, R. Raghavendra, 2017. "Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study," International Journal of Production Economics, Elsevier, vol. 186(C), pages 89-122.
    15. Kenan, Nabil & Diabat, Ali, 2022. "The supply chain of blood products in the wake of the COVID-19 pandemic: Appointment scheduling and other restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    16. Kees, M. Celeste & Bandoni, J. Alberto & Moreno, M. Susana, 2022. "A multi-period fuzzy optimization strategy for managing a centralized blood supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    17. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    18. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2019. "An enhanced procedure for managing blood supply chain under disruptions and uncertainties," Annals of Operations Research, Springer, vol. 283(1), pages 1413-1462, December.
    19. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    20. Mohammad Reza Ghatreh Samani & Seyyed-Mahdi Hosseini-Motlagh, 2021. "A robust framework for designing blood network in disaster relief: a real-life case," Operational Research, Springer, vol. 21(3), pages 1529-1568, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:82:y:2022:i:pa:s0038012122000283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.