IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v95y2022ics0739885922000294.html
   My bibliography  Save this article

Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris

Author

Listed:
  • Basma, Hussein
  • Haddad, Marc
  • Mansour, Charbel
  • Nemer, Maroun
  • Stabat, Pascal

Abstract

The high cost of battery electric buses (BEB), driven by battery and infrastructure costs, is a key factor limiting their market penetration. These costs are determined by the choice of battery size and charging infrastructure. In addition, the electrification of public transit buses raises questions regarding the fleets’ punctuality toward their pre-defined schedules, due to the possible schedule delays resulting from BEB charging. In this context, this paper presents a methodology to assess the techno-economic performance of BEB fleets for different battery sizes and charging infrastructures and strategies. The proposed methodology is based on a detailed total cost of ownership (TCO) model considering purchase, operation, maintenance, and infrastructure costs. In addition, a punctuality index (PI) is introduced to quantify schedule delays due to BEB charging events during the day. A case study is used to illustrate the model and results show that overnight charging has the highest TCO, 13% higher than the TCO observed during end-line or opportunity charging. Moreover, a clear trade-off is observed between TCO and BEB punctuality to their schedule. Results show that there is significant room to reduce the TCO of BEB while respecting their operational constraints, by co-optimizing the battery size and charging infrastructure.

Suggested Citation

  • Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
  • Handle: RePEc:eee:retrec:v:95:y:2022:i:c:s0739885922000294
    DOI: 10.1016/j.retrec.2022.101207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885922000294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2022.101207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    3. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    4. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    5. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2020. "Comprehensive energy modeling methodology for battery electric buses," Energy, Elsevier, vol. 207(C).
    6. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    7. Zicheng Bi & Robert Kleine & Gregory A. Keoleian, 2017. "Integrated Life Cycle Assessment and Life Cycle Cost Model for Comparing Plug-in versus Wireless Charging for an Electric Bus System," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 344-355, April.
    8. Qin, Nan & Gusrialdi, Azwirman & Paul Brooker, R. & T-Raissi, Ali, 2016. "Numerical analysis of electric bus fast charging strategies for demand charge reduction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 386-396.
    9. Gao, Zhiming & Lin, Zhenhong & LaClair, Tim J. & Liu, Changzheng & Li, Jan-Mou & Birky, Alicia K. & Ward, Jacob, 2017. "Battery capacity and recharging needs for electric buses in city transit service," Energy, Elsevier, vol. 122(C), pages 588-600.
    10. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    11. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
    12. Germana Trentadue & Alexandre Lucas & Marcos Otura & Konstantinos Pliakostathis & Marco Zanni & Harald Scholz, 2018. "Evaluation of Fast Charging Efficiency under Extreme Temperatures," Energies, MDPI, vol. 11(8), pages 1-13, July.
    13. Adnane Houbbadi & Rochdi Trigui & Serge Pelissier & Eduardo Redondo-Iglesias & Tanguy Bouton, 2019. "Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging," Energies, MDPI, vol. 12(14), pages 1-17, July.
    14. Mahmoud, Moataz & Garnett, Ryan & Ferguson, Mark & Kanaroglou, Pavlos, 2016. "Electric buses: A review of alternative powertrains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 673-684.
    15. Nie, Yu (Marco) & Ghamami, Mehrnaz, 2013. "A corridor-centric approach to planning electric vehicle charging infrastructure," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 172-190.
    16. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    17. Miles, John & Potter, Stephen, 2014. "Developing a viable electric bus service: The Milton Keynes demonstration project," Research in Transportation Economics, Elsevier, vol. 48(C), pages 357-363.
    18. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kinga Stecuła & Piotr Olczak & Paweł Kamiński & Dominika Matuszewska & Hai Duong Duc, 2022. "Towards Sustainable Transport: Techno-Economic Analysis of Investing in Hydrogen Buses in Public Transport in the Selected City of Poland," Energies, MDPI, vol. 15(24), pages 1-14, December.
    2. Iván López & Pedro Luis Calvo & Gonzalo Fernández-Sánchez & Carlos Sierra & Roberto Corchero & Cesar Omar Chacón & Carlos de Juan & Daniel Rosas & Francisco Burgos, 2022. "Different Approaches for a Goal: The Electrical Bus-EMT Madrid as a Successful Case Study," Energies, MDPI, vol. 15(17), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2022. "Energy consumption and battery sizing for different types of electric bus service," Energy, Elsevier, vol. 239(PE).
    3. Mustafa Hamurcu & Tamer Eren, 2020. "Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    4. Ali Saadon Al-Ogaili & Ali Q. Al-Shetwi & Hussein M. K. Al-Masri & Thanikanti Sudhakar Babu & Yap Hoon & Khaled Alzaareer & N. V. Phanendra Babu, 2021. "Review of the Estimation Methods of Energy Consumption for Battery Electric Buses," Energies, MDPI, vol. 14(22), pages 1-28, November.
    5. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    6. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    7. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    8. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    9. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    10. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    11. Hatem Abdelaty & Moataz Mohamed, 2021. "A Prediction Model for Battery Electric Bus Energy Consumption in Transit," Energies, MDPI, vol. 14(10), pages 1-26, May.
    12. Gallet, Marc & Massier, Tobias & Hamacher, Thomas, 2018. "Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks," Applied Energy, Elsevier, vol. 230(C), pages 344-356.
    13. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    14. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    15. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    16. Wang, Yusheng & Huang, Yongxi & Xu, Jiuping & Barclay, Nicole, 2017. "Optimal recharging scheduling for urban electric buses: A case study in Davis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 115-132.
    17. Krzysztof Zagrajek & Józef Paska & Mariusz Kłos & Karol Pawlak & Piotr Marchel & Magdalena Bartecka & Łukasz Michalski & Paweł Terlikowski, 2020. "Impact of Electric Bus Charging on Distribution Substation and Local Grid in Warsaw," Energies, MDPI, vol. 13(5), pages 1-13, March.
    18. Lim, Lek Keng & Muis, Zarina Ab & Ho, Wai Shin & Hashim, Haslenda & Bong, Cassendra Phun Chien, 2023. "Review of the energy forecasting and scheduling model for electric buses," Energy, Elsevier, vol. 263(PD).
    19. Dennis Dreier & Björn Rudin & Mark Howells, 2020. "Comparison of management strategies for the charging schedule and all-electric operation of a plug-in hybrid-electric bi-articulated bus fleet," Public Transport, Springer, vol. 12(2), pages 363-404, June.
    20. Lin, Boqiang & Tan, Ruipeng, 2017. "Are people willing to pay more for new energy bus fares?," Energy, Elsevier, vol. 130(C), pages 365-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:95:y:2022:i:c:s0739885922000294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.