IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v41y2012i4p770-779.html
   My bibliography  Save this article

Intra-plant diffusion of new technology: Role of productivity in the study of steel refining furnaces

Author

Listed:
  • Nakamura, Tsuyoshi
  • Ohashi, Hiroshi

Abstract

This paper examines intra-plant diffusion of new technology in the Japanese steel industry. The introduction of the basic oxygen furnace (BOF) was the greatest breakthrough in steel refining in the last century. Using unique panel data, the paper estimates total factor productivity by technology type, and associates the estimates with intra-plant diffusion. The paper finds that intra-plant diffusion accounts for about a half of the industry productivity growth. Large plants are likely to adopt the new technology earlier, but retain the old technology longer, than their smaller counterparts.

Suggested Citation

  • Nakamura, Tsuyoshi & Ohashi, Hiroshi, 2012. "Intra-plant diffusion of new technology: Role of productivity in the study of steel refining furnaces," Research Policy, Elsevier, vol. 41(4), pages 770-779.
  • Handle: RePEc:eee:respol:v:41:y:2012:i:4:p:770-779
    DOI: 10.1016/j.respol.2011.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733311002186
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jovanovic, Boyan & Lach, Saul, 1989. "Entry, Exit, and Diffusion with Learning by Doing," American Economic Review, American Economic Association, vol. 79(4), pages 690-699, September.
    2. Odagiri, Hiroyuki & Goto, Akira, 1996. "Technology and Industrial Development in Japan: Building Capabilities by Learning, Innovation and Public Policy," OUP Catalogue, Oxford University Press, number 9780198288022.
    3. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    4. Francesco Caselli, 1999. "Technological Revolutions," American Economic Review, American Economic Association, vol. 89(1), pages 78-102, March.
    5. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    6. Battisti, Giuliana & Stoneman, Paul, 2005. "The intra-firm diffusion of new process technologies," International Journal of Industrial Organization, Elsevier, vol. 23(1-2), pages 1-22, February.
    7. Battisti, Giuliana & Stoneman, Paul, 2003. "Inter- and intra-firm effects in the diffusion of new process technology," Research Policy, Elsevier, vol. 32(9), pages 1641-1655, October.
    8. Battisti, Giuliana & Canepa, Alessandra & Stoneman, Paul, 2009. "e-Business usage across and within firms in the UK: profitability, externalities and policy," Research Policy, Elsevier, vol. 38(1), pages 133-143, February.
    9. Casey Ichniowski & Kathryn Shaw, 1999. "The Effects of Human Resource Management Systems on Economic Performance: An International Comparison of U.S. and Japanese Plants," Management Science, INFORMS, vol. 45(5), pages 704-721, May.
    10. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Intra-plant diffusion; Total factor productivity; Innovation; Technological change;

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L61 - Industrial Organization - - Industry Studies: Manufacturing - - - Metals and Metal Products; Cement; Glass; Ceramics
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:41:y:2012:i:4:p:770-779. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/respol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.