IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp694-709.html
   My bibliography  Save this article

Green fuel as alternative fuel for diesel engine: A review

Author

Listed:
  • Othman, Mohd Fahmi
  • Adam, Abdullah
  • Najafi, G.
  • Mamat, Rizalman

Abstract

Green fuels also called green hydrocarbons, biofuels, are fuel produced from biomass sources through a variety of biological and thermochemical processes. These products are similar to petroleum gasoline and diesel fuels and are therefore considered fully infrastructure compatible fuels. They can be utilized in engines without engine modification. This paper presents a comprehensive review on the potential of biodiesel from different waste feedstock biodiesel such as waste cooking oil and waste plastic oil. Furthermore, the effect on the engine performance, combustion and exhaust emissions including details of engine and operating condition also review in this paper. The main goal of this paper is to provide information to the engineers, industrialists and researchers who are interested on waste biodiesel and to prominence waste biodiesel as a promising alternative replacement for fossil fuels. A large number of literatures from highly rated journals in scientific indexes are reviewed including the most recent publications.

Suggested Citation

  • Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:694-709
    DOI: 10.1016/j.rser.2017.05.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Costa Evangelista, João Paulo & Gondim, Amanda Duarte & Souza, Luiz Di & Araujo, Antonio Souza, 2016. "Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 887-894.
    2. Utlu, Zafer & Koçak, Mevlüt Süreyya, 2008. "The effect of biodiesel fuel obtained from waste frying oil on direct injection diesel engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 33(8), pages 1936-1941.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Wallington, T.J. & Lambert, C.K. & Ruona, W.C., 2013. "Diesel vehicles and sustainable mobility in the U.S," Energy Policy, Elsevier, vol. 54(C), pages 47-53.
    5. Lin, Yuan-Chung & Hsu, Kuo-Hsiang & Chen, Chung-Bang, 2011. "Experimental investigation of the performance and emissions of a heavy-duty diesel engine fueled with waste cooking oil biodiesel/ultra-low sulfur diesel blends," Energy, Elsevier, vol. 36(1), pages 241-248.
    6. Devan, P.K. & Mahalakshmi, N.V., 2009. "A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil-eucalyptus oil blends," Applied Energy, Elsevier, vol. 86(5), pages 675-680, May.
    7. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    8. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    9. Nel, Willem P. & Cooper, Christopher J., 2009. "Implications of fossil fuel constraints on economic growth and global warming," Energy Policy, Elsevier, vol. 37(1), pages 166-180, January.
    10. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    11. Haik, Yousef & Selim, Mohamed Y.E. & Abdulrehman, Tahir, 2011. "Combustion of algae oil methyl ester in an indirect injection diesel engine," Energy, Elsevier, vol. 36(3), pages 1827-1835.
    12. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    13. Ayanoğlu, Abdulkadir & Yumrutaş, Recep, 2016. "Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis," Energy, Elsevier, vol. 103(C), pages 456-468.
    14. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    15. Sayin, Cenk & Ilhan, Murat & Canakci, Mustafa & Gumus, Metin, 2009. "Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends," Renewable Energy, Elsevier, vol. 34(5), pages 1261-1269.
    16. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    17. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    18. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    19. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    20. Zhang, Huiming & Wang, Qunwei & Mortimer, Simon R., 2012. "Waste cooking oil as an energy resource: Review of Chinese policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5225-5231.
    21. Mani, M. & Nagarajan, G. & Sampath, S., 2011. "Characterisation and effect of using waste plastic oil and diesel fuel blends in compression ignition engine," Energy, Elsevier, vol. 36(1), pages 212-219.
    22. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    23. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    24. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    25. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    26. Knecht, Walter, 2008. "Diesel engine development in view of reduced emission standards," Energy, Elsevier, vol. 33(2), pages 264-271.
    27. Hwang, Joonsik & Qi, Donghui & Jung, Yongjin & Bae, Choongsik, 2014. "Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel," Renewable Energy, Elsevier, vol. 63(C), pages 9-17.
    28. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    29. Najafi, Gholamhassan & Ghobadian, Barat, 2011. "LLK1694-wind energy resources and development in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2719-2728, August.
    30. Baruch, Jordan J., 2008. "Combating global warming while enhancing the future," Technology in Society, Elsevier, vol. 30(2), pages 111-121.
    31. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    32. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    33. Devaraj, J. & Robinson, Y. & Ganapathi, P., 2015. "Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine," Energy, Elsevier, vol. 85(C), pages 304-309.
    34. Arpa, O. & Yumrutas, R. & Alma, M.H., 2010. "Effects of turpentine and gasoline-like fuel obtained from waste lubrication oil on engine performance and exhaust emission," Energy, Elsevier, vol. 35(9), pages 3603-3613.
    35. He, Bang-Quan, 2016. "Advances in emission characteristics of diesel engines using different biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 570-586.
    36. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    37. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Taufiq-Yap, Yun Hin, 2015. "Waste ostrich- and chicken-eggshells as heterogeneous base catalyst for biodiesel production from used cooking oil: Catalyst characterization and biodiesel yield performance," Applied Energy, Elsevier, vol. 160(C), pages 58-70.
    38. Pal, Amit & Verma, Ashish & Kachhwaha, S.S. & Maji, S., 2010. "Biodiesel production through hydrodynamic cavitation and performance testing," Renewable Energy, Elsevier, vol. 35(3), pages 619-624.
    39. Mani, M. & Nagarajan, G., 2009. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on waste plastic oil," Energy, Elsevier, vol. 34(10), pages 1617-1623.
    40. Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
    41. Arjun B. Chhetri & K. Chris Watts & M. Rafiqul Islam, 2008. "Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production," Energies, MDPI, vol. 1(1), pages 1-16, April.
    42. Hirkude, Jagannath Balasaheb & Padalkar, Atul S., 2012. "Performance and emission analysis of a compression ignition," Applied Energy, Elsevier, vol. 90(1), pages 68-72.
    43. Abedin, M.J. & Imran, A. & Masjuki, H.H. & Kalam, M.A. & Shahir, S.A. & Varman, M. & Ruhul, A.M., 2016. "An overview on comparative engine performance and emission characteristics of different techniques involved in diesel engine as dual-fuel engine operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 306-316.
    44. Chen, Chia-Yang & Lee, Wen-Jhy & Wang, Lin-Chi & Chang, Yu-Cheng & Yang, Hsi-Hsien & Young, Li-Hao & Lu, Jau-Huai & Tsai, Ying I. & Cheng, Man-Ting & Mwangi, John Kennedy, 2017. "Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel," Applied Energy, Elsevier, vol. 191(C), pages 35-43.
    45. Muralidharan, K. & Vasudevan, D. & Sheeba, K.N., 2011. "Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine," Energy, Elsevier, vol. 36(8), pages 5385-5393.
    46. Lim, Steven & Teong, Lee Keat, 2010. "Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 938-954, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. AM. Faizal & A. Amirah & Y. H. Tan, 2018. "Energy, Economic And Environmental Impact Of Waste-To-Energy In Malaysia," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 97-101, September.
    3. Zhang-Chun Tang & Yanjun Xia & Qi Xue & Jie Liu, 2018. "A Non-Probabilistic Solution for Uncertainty and Sensitivity Analysis on Techno-Economic Assessments of Biodiesel Production with Interval Uncertainties," Energies, MDPI, vol. 11(3), pages 1-17, March.
    4. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    5. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    6. Mohd Hafiz Ali & Abdullah Adam & Mohd Hafizil Mat Yasin & Mohd Kamal Kamarulzaman & Mohd Fahmi Othman, 2020. "Mitigation of NOx emission by monophenolic antioxidants blended in POME biodiesel blends," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 829-839, August.
    7. Liu, Haoye & Wang, Zhi & Li, Yanfei & Zheng, Yanyan & He, Tanjin & Wang, Jianxin, 2019. "Recent progress in the application in compression ignition engines and the synthesis technologies of polyoxymethylene dimethyl ethers," Applied Energy, Elsevier, vol. 233, pages 599-611.
    8. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    9. Massimo Beccarello & Giacomo Di Foggia, 2023. "Review and Perspectives of Key Decarbonization Drivers to 2030," Energies, MDPI, vol. 16(3), pages 1-13, January.
    10. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    11. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    12. Hoang, Anh Tuan & Murugesan, Parthasarathy & PV, Elumalai & Balasubramanian, Dhinesh & Parida, Satyajeet & Priya Jayabal, Chandra & Nachippan, Murugu & Kalam, M.A & Truong, Thanh Hai & Cao, Dao Nam & , 2023. "Strategic combination of waste plastic/tire pyrolysis oil with biodiesel for natural gas-enriched HCCI engine: Experimental analysis and machine learning model," Energy, Elsevier, vol. 280(C).
    13. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Alnarabiji, Mohamad Sahban & Tantawi, Omar & Ramli, Anita & Mohd Zabidi, Noor Asmawati & Ghanem, Ouahid Ben & Abdullah, Bawadi, 2019. "Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Weronika Gracz & Damian Marcinkowski & Wojciech Golimowski & Filip Szwajca & Maria Strzelczyk & Jacek Wasilewski & Paweł Krzaczek, 2021. "Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels," Energies, MDPI, vol. 14(12), pages 1-19, June.
    16. Dhahad, Hayder A. & Chaichan, Miqdam T. & Megaritis, T., 2019. "Performance, regulated and unregulated exhaust emission of a stationary compression ignition engine fueled by water-ULSD emulsion," Energy, Elsevier, vol. 181(C), pages 1036-1050.
    17. repec:zib:zjmerd:3jmerd2018-97-101 is not listed on IDEAS
    18. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    20. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    21. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Kamil Duda & Maciej Mikulski, 2021. "Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE)," Energies, MDPI, vol. 14(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    6. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    7. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    8. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    9. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    10. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    11. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    12. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    13. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    14. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    15. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    16. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    17. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    18. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    19. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    20. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:694-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.