IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v7y2003i3p249-270.html
   My bibliography  Save this article

Comprehensive modelling for approaching the Kyoto targets on a local scale

Author

Listed:
  • Pietrapertosa, F.
  • Cosmi, C.
  • Macchiato, M.
  • Marmo, G.
  • Salvia, M.

Abstract

This study aimed to evaluate the effectiveness of the MARKAL comprehensive model in the development of coherent medium-term strategies and sound climate protection policies at local level. The local case study (Val d'Agri, Basilicata region, Italy) discusses the possible role of local communities in the achievement of the national objectives derived by the Kyoto Protocol, investigating the traditional sectors responsible for air pollution and providing a full picture of the main energy and material flows. A scenario by scenario analysis was performed to analyse the response of the modelled system to the introduction of an exogenous constraint on carbon dioxide (CO2) emissions. The main effects are presented with reference to fuel mix, technology choice, real market prices and reduced costs of competing options. The comparison of the solutions obtained for the different scenarios is useful to point out the effects of the CO2 constraint on the total system cost and on the emission levels of other atmospheric pollutants. A further multiobjective optimisation was performed to analyse the effects of combined environmental constraints (CO2 and particulate) on the overall system cost as well as in terms of marginal costs.

Suggested Citation

  • Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Marmo, G. & Salvia, M., 2003. "Comprehensive modelling for approaching the Kyoto targets on a local scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(3), pages 249-270, June.
  • Handle: RePEc:eee:rensus:v:7:y:2003:i:3:p:249-270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(03)00041-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D. P., 2002. "The role of renewable energy sources within the framework of the Kyoto Protocol: the case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 247-269, September.
    2. Hadley, S. W. & Short, W., 2001. "Electricity sector analysis in the clean energy futures study," Energy Policy, Elsevier, vol. 29(14), pages 1285-1298, November.
    3. Gielen, DJ, 1995. "Toward integrated energy and materials policies?: A case study on CO2 reduction in the Netherlands," Energy Policy, Elsevier, vol. 23(12), pages 1049-1062, December.
    4. D.J. Gielen, 2000. "On Carbon Leakage and Technological Change," Energy & Environment, , vol. 11(1), pages 49-63, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvia, M. & Pietrapertosa, F. & Cosmi, C. & Cuomo, V. & Macchiato, M., 2004. "Approaching the Kyoto targets: a case study for Basilicata region (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(1), pages 73-90, February.
    2. Terrados, J. & Almonacid, G. & Pérez-Higueras, P., 2009. "Proposal for a combined methodology for renewable energy planning. Application to a Spanish region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2022-2030, October.
    3. Yangka, Dorji & Diesendorf, Mark, 2016. "Modeling the benefits of electric cooking in Bhutan: A long term perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 494-503.
    4. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    5. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    8. Pietrapertosa, F. & Cosmi, C. & Macchiato, M. & Salvia, M. & Cuomo, V., 2009. "Life Cycle Assessment, ExternE and Comprehensive Analysis for an integrated evaluation of the environmental impact of anthropogenic activities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1039-1048, June.
    9. Marcin Rabe & Dalia Streimikiene & Wojciech Drożdż & Yuriy Bilan & Rafal Kasperowicz, 2020. "Sustainable regional energy planning: The case of hydro," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1652-1662, November.
    10. Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
    11. Comodi, G. & Cioccolanti, L. & Gargiulo, M., 2012. "Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES," Energy Policy, Elsevier, vol. 41(C), pages 303-315.
    12. Anis Radzi, 2015. "A survey of expert attitudes on understanding and governing energy autonomy at the local level," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 397-405, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    2. Gasol, Carles M. & Martínez, Sergio & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of poplar bioenergy systems in the Southern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 801-812, May.
    3. Varho, Vilja & Tapio, Petri, 2005. "Wind power in Finland up to the year 2025--`soft' scenarios based on expert views," Energy Policy, Elsevier, vol. 33(15), pages 1930-1947, October.
    4. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    5. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    6. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part I: Where RES do not meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6499-6513, November.
    7. Cosmi, C. & Macchiato, M. & Mangiamele, L. & Marmo, G. & Pietrapertosa, F. & Salvia, M., 2003. "Environmental and economic effects of renewable energy sources use on a local case study," Energy Policy, Elsevier, vol. 31(5), pages 443-457, April.
    8. Carley, Sanya, 2011. "Decarbonization of the U.S. electricity sector: Are state energy policy portfolios the solution?," Energy Economics, Elsevier, vol. 33(5), pages 1004-1023, September.
    9. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    10. Gielen, Dolf & Taylor, Michael, 2007. "Modelling industrial energy use: The IEAs Energy Technology Perspectives," Energy Economics, Elsevier, vol. 29(4), pages 889-912, July.
    11. Martínez-Lozano, Sergio & Gasol, Carles M. & Rigola, Miquel & Rieradevall, Joan & Anton, Assumpció & Carrasco, Juan & Ciria, Pilar & Gabarrell, Xavier, 2009. "Feasibility assessment of Brassica carinata bioenergy systems in Southern Europe," Renewable Energy, Elsevier, vol. 34(12), pages 2528-2535.
    12. Dolf Gielen & Yuichi Moriguchi, 2002. "Materials policy design," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 5(1), pages 17-37, March.
    13. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
    14. Koomey, Jonathan G. & Webber, Carrie A. & Atkinson, Celina S. & Nicholls, Andrew, 2001. "Addressing energy-related challenges for the US buildings sector: results from the clean energy futures study," Energy Policy, Elsevier, vol. 29(14), pages 1209-1221, November.
    15. Vatalis, Konstantinos I. & Laaksonen, Aatto & Charalampides, George & Benetis, Nikolas P., 2012. "Intermediate technologies towards low-carbon economy. The Greek zeolite CCS outlook into the EU commitments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3391-3400.
    16. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
    17. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    18. Kim, Dong Wook & Chang, Hyun Joon, 2012. "Experience curve analysis on South Korean nuclear technology and comparative analysis with South Korean renewable technologies," Energy Policy, Elsevier, vol. 40(C), pages 361-373.
    19. Köne, Aylin Çigdem & Büke, Tayfun, 2010. "Forecasting of CO2 emissions from fuel combustion using trend analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2906-2915, December.
    20. Halkos, George & Tzeremes, Nickolaos, 2011. "A nonparametric analysis of the Greek renewable energy sector," MPRA Paper 30467, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:7:y:2003:i:3:p:249-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.