IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v19y2013icp573-581.html
   My bibliography  Save this article

Real options theory applied to electricity generation projects: A review

Author

Listed:
  • Martínez Ceseña, E.A.
  • Mutale, J.
  • Rivas-Dávalos, F.

Abstract

Real options (RO) theory is well known for enhancing the value of projects under uncertainty. This is achieved by modelling the flexibility that managers possess to adjust the projects in response to changes in their environments. Based on this, RO theory could be used to tackle current energy and environmental issues by enhancing the value of electricity generation projects (EGP), especially renewable energy projects (REP).

Suggested Citation

  • Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
  • Handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:573-581
    DOI: 10.1016/j.rser.2012.11.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112006739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.11.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Sarkis & Maurry Tamarkin, 2008. "Real options analysis for renewable energy technologies in a GHG emissions trading environment," Springer Books, in: Ralf Antes & Bernd Hansjürgens & Peter Letmathe (ed.), Emissions Trading, pages 103-119, Springer.
    2. Lenos Trigeorgis, 1993. "Real Options and Interactions With Financial Flexibility," Financial Management, Financial Management Association, vol. 22(3), Fall.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Kasanen, Eero & Trigeorgis, Lenos, 1994. "A market utility approach to investment valuation," European Journal of Operational Research, Elsevier, vol. 74(2), pages 294-309, April.
    5. Siddiqui, Afzal S. & Marnay, Chris & Wiser, Ryan H., 2007. "Real options valuation of US federal renewable energy research, development, demonstration, and deployment," Energy Policy, Elsevier, vol. 35(1), pages 265-279, January.
    6. Venetsanos, Konstantinos & Angelopoulou, Penelope & Tsoutsos, Theocharis, 2002. "Renewable energy sources project appraisal under uncertainty: the case of wind energy exploitation within a changing energy market environment," Energy Policy, Elsevier, vol. 30(4), pages 293-307, March.
    7. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, December.
    8. Davis, Graham A. & Owens, Brandon, 2003. "Optimizing the level of renewable electric R&D expenditures using real options analysis," Energy Policy, Elsevier, vol. 31(15), pages 1589-1608, December.
    9. Fleten, S.-E. & Maribu, K.M. & Wangensteen, I., 2007. "Optimal investment strategies in decentralized renewable power generation under uncertainty," Energy, Elsevier, vol. 32(5), pages 803-815.
    10. Jamasb, Tooraj & Nuttall, William J. & Pollitt, Michael, 2008. "The case for a new energy research, development and promotion policy for the UK," Energy Policy, Elsevier, vol. 36(12), pages 4610-4614, December.
    11. Bøckman, Thor & Fleten, Stein-Erik & Juliussen, Erik & Langhammer, Håvard J. & Revdal, Ingemar, 2008. "Investment timing and optimal capacity choice for small hydropower projects," European Journal of Operational Research, Elsevier, vol. 190(1), pages 255-267, October.
    12. Takashima, Ryuta & Goto, Makoto & Kimura, Hiroshi & Madarame, Haruki, 2008. "Entry into the electricity market: Uncertainty, competition, and mothballing options," Energy Economics, Elsevier, vol. 30(4), pages 1809-1830, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    2. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    3. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
    5. Assereto, Martina & Byrne, Julie, 2021. "No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Lin, Boqiang & Wesseh, Presley K., 2013. "Valuing Chinese feed-in tariffs program for solar power generation: A real options analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 474-482.
    7. Barroso, Manuel Monjas & Iniesta, José Balibrea, 2014. "A valuation of wind power projects in Germany using real regulatory options," Energy, Elsevier, vol. 77(C), pages 422-433.
    8. Martínez-Ceseña, E.A. & Mutale, J., 2011. "Application of an advanced real options approach for renewable energy generation projects planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2087-2094, May.
    9. Fernandes, Bartolomeu & Cunha, Jorge & Ferreira, Paula, 2011. "The use of real options approach in energy sector investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4491-4497.
    10. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    11. Lee, Shun-Chung, 2011. "Using real option analysis for highly uncertain technology investments: The case of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4443-4450.
    12. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    13. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    14. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    16. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    17. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    18. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    19. Cuervo, Felipe Isaza & Botero, Sergio Botero, 2016. "Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1359-1372.
    20. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:19:y:2013:i:c:p:573-581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.