IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-73653-2_7.html
   My bibliography  Save this book chapter

Real options analysis for renewable energy technologies in a GHG emissions trading environment

In: Emissions Trading

Author

Listed:
  • Joseph Sarkis

    (Clark University Graduate School of Management)

  • Maurry Tamarkin

    (Clark University Graduate School of Management)

Abstract

Green house gas (GHG) emissions have been tied to global climate change. Governments are seeking ways to help improve performance of their countries on this environmental issue through introduction of various policy instruments. One popular policy instrument that seems to have gained credibility with explicit mention of its application in the Kyoto Protocol is the use of permit trading and cap-and-trade mechanisms. Various political regions, countries, and even corporations have introduced, are introducing or seek to introduce this mechanism. Organizations functioning within this environment will need to manage their resources appropriately to remain competitive. Organizations will either have the opportunity to purchase emissions credits (offsets) from a market trading scheme or seek to reduce their emissions through different measures. Some measures may include investment in new technologies that will reduce their reliance on GHG emitting practices. In many countries, large organizations and institutions generate their own power to operate their facilities. Much of this power is generated (or bought) from GHG producing technology. Specific renewable energy sources such as wind and solar photovoltaic technology may become more feasible alternatives available to a large percentage of these organizations if they are able to take advantage and incorporate the market for GHG emissions trading in their analyses. To help organizations evaluate investment in these renewable energy technologies we introduce a real options based model that will take into consideration uncertainties associated with the technology and those associated with the GHG trading market. The real options analysis will consider both the stochastic (uncertainty) nature of the exercise price of the technology and the stochastic nature of the market trading price of the GHG emissions. Managerial and policy implications will be discussed.

Suggested Citation

  • Joseph Sarkis & Maurry Tamarkin, 2008. "Real options analysis for renewable energy technologies in a GHG emissions trading environment," Springer Books, in: Ralf Antes & Bernd Hansjürgens & Peter Letmathe (ed.), Emissions Trading, pages 103-119, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-73653-2_7
    DOI: 10.1007/978-0-387-73653-2_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeng, Yaxiong & Klabjan, Diego & Arinez, Jorge, 2015. "Distributed solar renewable generation: Option contracts with renewable energy credit uncertainty," Energy Economics, Elsevier, vol. 48(C), pages 295-305.
    2. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    3. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    4. Zhang, Hanyu & Assereto, Martina & Byrne, Julie, 2023. "Deferring real options with solar renewable energy certificates," Global Finance Journal, Elsevier, vol. 55(C).
    5. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    6. Kyung-Taek Kim & Deok-Joo Lee & Donghyun An, 2020. "Real Option Valuation of the R&D Investment in Renewable Energy Considering the Effects of the Carbon Emission Trading Market: A Korean Case," Energies, MDPI, vol. 13(3), pages 1-17, February.
    7. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    8. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
    9. Kim, Byungil & Kim, Changyoon & Han, SangUk & Bae, JuHyun & Jung, Jaehoon, 2020. "Is it a good time to develop commercial photovoltaic systems on farmland? An American-style option with crop price risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    10. Martínez Ceseña, E.A. & Mutale, J. & Rivas-Dávalos, F., 2013. "Real options theory applied to electricity generation projects: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 573-581.
    11. Gazheli, Ardjan & van den Bergh, Jeroen, 2018. "Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2693-2704.
    12. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    13. Agnė Šimelytė & Galina Ševčenko & Galina Ševčenko & Najiba El Amrani El Idrissi & Salvatore Monni, 2016. "Promotion of renewable energy in Morocco," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 3(4), pages 319-327, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-73653-2_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.