IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123010845.html
   My bibliography  Save this article

A comprehensive approach for calibrating anthropogenic effects on atmosphere degradation

Author

Listed:
  • You, Geonhwa

Abstract

Climate change is the most pervasive threat to the ecosystem, species survival, global economy, and urban lives. Global citizens and governments have perceived the alleviation of harmful anthropogenic effects as an urgent priority. However, conflicting interests between interest groups preclude achieving a common goal. The convincing solutions fundamentally proceed from the precise calibration. Considerable efforts have established calibration models where population density and road transportation have been investigated as major proxies. The model components generally involve spatiotemporal characteristics, but the consideration of time-varying, spatially correlated attributes is insufficient. This article presents a pilot approach in a comprehensive manner; it includes a spatial feature transformation procedure called Kriging for spatial consistency and applying model-fitting and explanation techniques. In the case study, the regression models fit by OLS, Ridge, and Lasso showed analogous coefficients for SO2, NO2, CO, O3, PM2.5, and PM10 emissions, whereas the magnitudes and directions extracted by classification techniques such as ANN and XGBoost vary with emission intensity. This quantitative interpretation based on coefficients or weights could be incompatible with qualitative aspects. As an alternative, this article applied SHAP technique to XGBoost so that the discovery of multidirectional relationships complemented this incongruity. In conclusion, the model design needs to encompass the whole process from recognizing data properties to eliciting high accuracy and scientific proof for efficacious policies and schemes. Environmental action building on valid models would promise to alleviate climate risks and sustain lives.

Suggested Citation

  • You, Geonhwa, 2024. "A comprehensive approach for calibrating anthropogenic effects on atmosphere degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010845
    DOI: 10.1016/j.rser.2023.114226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geonhwa You, 2022. "Spatiotemporal Data-Adaptive Clustering Algorithm: An Intelligent Computational Technique for City Big Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 112(2), pages 602-619, February.
    2. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    3. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    4. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    5. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    6. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    7. Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    8. Ribaud, Mélina & Blanchet-Scalliet, Christophette & Helbert, Céline & Gillot, Frédéric, 2020. "Robust optimization: A kriging-based multi-objective optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    10. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    11. Aleix Bassolas & Hugo Barbosa-Filho & Brian Dickinson & Xerxes Dotiwalla & Paul Eastham & Riccardo Gallotti & Gourab Ghoshal & Bryant Gipson & Surendra A. Hazarie & Henry Kautz & Onur Kucuktunc & Alli, 2019. "Hierarchical organization of urban mobility and its connection with city livability," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    13. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    14. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    2. Yanan Wang & Wei Chen & Minjuan Zhao & Bowen Wang, 2019. "Analysis of the influencing factors on CO2 emissions at different urbanization levels: regional difference in China based on panel estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 627-645, March.
    3. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    4. Liu, Xuyi & Kong, Hao & Zhang, Shun, 2021. "Can urbanization, renewable energy, and economic growth make environment more eco-friendly in Northeast Asia?," Renewable Energy, Elsevier, vol. 169(C), pages 23-33.
    5. Shanshan Guo & Yanfang Zhang & Xiangyan Qian & Zhang Ming & Rui Nie, 2019. "Urbanization and CO2 emissions in resource-exhausted cities: evidence from Xuzhou city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 807-826, November.
    6. Faisal Faisal & Ruqiya Pervaiz & Nesrin Ozatac & Turgut Tursoy, 2021. "Exploring the relationship between carbon dioxide emissions, urbanisation and financial deepening for Turkey using the symmetric and asymmetric causality approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17374-17402, December.
    7. Bingjie Xu & Ruoyu Zhong & Hui Qiao, 2020. "The impact of biofuel consumption on CO2 emissions: A panel data analysis for seven selected G20 countries," Energy & Environment, , vol. 31(8), pages 1498-1514, December.
    8. Long, X. & Ji, Xi & Ulgiati, S., 2017. "Is urbanization eco-friendly? An energy and land use cross-country analysis," Energy Policy, Elsevier, vol. 100(C), pages 387-396.
    9. Hussain Ali Bekhet & Nor Salwati Othman & Tahira Yasmin, 2020. "Interaction Between Environmental Kuznet Curve and Urban Environment Transition Hypotheses in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(1), pages 384-402.
    10. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
    11. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    12. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    13. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    14. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    15. Xu, Jiajun & Wang, Jinchao & Li, Rui & Yang, Xiaojun, 2023. "Spatio-temporal effects of urbanization on CO2 emissions: Evidences from 268 Chinese cities," Energy Policy, Elsevier, vol. 177(C).
    16. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    17. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    18. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    19. Mrabet, Zouhair & Alsamara, Mouyad & Saleh, Ali Salman & Anwar, Sajid, 2019. "Urbanization and non-renewable energy demand: A comparison of developed and emerging countries," Energy, Elsevier, vol. 170(C), pages 832-839.
    20. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123010845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.