IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123008845.html
   My bibliography  Save this article

Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections

Author

Listed:
  • Guo, Junhong
  • Chen, Zhuo
  • Meng, Jing
  • Zheng, Heran
  • Fan, Yuri
  • Ji, Ling
  • Wang, Xiuquan
  • Liang, Xi

Abstract

Vigorous development of solar photovoltaic energy (PV) is one of the key components to achieve China's “30•60 Dual-Carbon Target”. In this study, by utilizing the outputs generated by CMIP6 models under different shared socioeconomic pathways (SSPs) and a physical PV model (GSEE), future changes in PV power generation across China are provided for the outlined carbon neutralization period (2051–2070). The results reveal distinct spatiotemporal characteristics in the changes in PV output across China. Overall, compared to the historical period, annual PV power generation is projected to decrease in northern regions and Tibet Plateau with a maximum decrease of ∼4 % under the high emission scenario (SSP585), while southern and central regions exhibit significant increases. Remarkably, under the green development pathway (SSP126), PV power generation is expected to rise by over 10 % in these regions. The magnitude of decrease in the north and increase in the south is projected to become more pronounced with the continuous increase of future carbon emissions. It is anticipated that the three northern regions of China will experience greater decreases in PV power generation in winter compared to other seasons, especially under SSP585. Additionally, the southeast region shows the smallest increase in summer PV generation out of all seasons. Moreover, under SSP126 trajectory, most regions in China exhibit reduced inter-annual and intra-annual variability in PV generation compared to the historical levels. This suggests that pursuing a sustainable path could substantially mitigate potential risks associated with PV generation fluctuations in China.

Suggested Citation

  • Guo, Junhong & Chen, Zhuo & Meng, Jing & Zheng, Heran & Fan, Yuri & Ji, Ling & Wang, Xiuquan & Liang, Xi, 2024. "Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008845
    DOI: 10.1016/j.rser.2023.114026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    PV output; China; SSPs; Projection; GSEE;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123008845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.