IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014842.html
   My bibliography  Save this article

Different approaches to analyze the impact of future climate change on the exploitation of wave energy

Author

Listed:
  • deCastro, M.
  • Rusu, L.
  • Arguilé-Pérez, B.
  • Ribeiro, A.
  • Costoya, X.
  • Carvalho, D.
  • Gómez-Gesteira, M.

Abstract

The increment of the share of renewable energies in the global mix implies that all renewable energies must be exploited. In this sense, it is necessary to make significant research and investment effort in the particular case of wave energy to reach the degree of maturity of other marine energies in the near future. Apart from the inherent factors that hinder the development of wave energy, such as the non-existence of a market-leading type of capturing device, uncertainties about the available future resource also hamper its growth. In this article, a review of the procedures followed in the literature to deal with the future wave energy resources and their subsequent exploitation is described. These procedures include the evaluation of the best future atmospheric models to drive wave models, the different downscaling techniques to evaluate the resource in large regions with high spatial resolution, and the analysis of the variability of the future energy resource and its future exploitability in a certain region taking into account different types of devices. Additionally, the current state of the art of previous studies dealing with future wave energy resources for different locations worldwide is described. Despite the difficulties involved in studying future wave energy resources, the high technological readiness level of the offshore wind industry, the creation of power generation farms with combined technologies, and the growth of marine aquaculture in the coming years could generate synergies that provide the definitive impulse to achieve the necessary technological development.

Suggested Citation

  • deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014842
    DOI: 10.1016/j.renene.2023.119569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    2. Siegel, Stefan G., 2019. "Numerical benchmarking study of a Cycloidal Wave Energy Converter," Renewable Energy, Elsevier, vol. 134(C), pages 390-405.
    3. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    4. Breslow, Paul B. & Sailor, David J., 2002. "Vulnerability of wind power resources to climate change in the continental United States," Renewable Energy, Elsevier, vol. 27(4), pages 585-598.
    5. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    6. Bahareh Kamranzad & George Lavidas & Kaoru Takara, 2020. "Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria," Energies, MDPI, vol. 13(3), pages 1-12, February.
    7. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    8. Koletsis, I. & Kotroni, V. & Lagouvardos, K. & Soukissian, T., 2016. "Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 234-245.
    9. Reeve, D.E. & Chen, Y. & Pan, S. & Magar, V. & Simmonds, D.J. & Zacharioudaki, A., 2011. "An investigation of the impacts of climate change on wave energy generation: The Wave Hub, Cornwall, UK," Renewable Energy, Elsevier, vol. 36(9), pages 2404-2413.
    10. Aydoğan, Burak & Görmüş, Tahsin & Ayat, Berna & Çarpar, Tunay, 2021. "Analysis of potential changes in the Black Sea wave power for the 21st century," Renewable Energy, Elsevier, vol. 169(C), pages 512-526.
    11. Jennifer Brown & Judith Wolf & Alejandro Souza, 2012. "Past to future extreme events in Liverpool Bay: model projections from 1960–2100," Climatic Change, Springer, vol. 111(2), pages 365-391, March.
    12. Davy, Richard & Gnatiuk, Natalia & Pettersson, Lasse & Bobylev, Leonid, 2018. "Climate change impacts on wind energy potential in the European domain with a focus on the Black Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1652-1659.
    13. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    14. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    15. Zheng, Chong-wei & Xiao, Zi-niu & Peng, Yue-hua & Li, Chong-yin & Du, Zhi-bo, 2018. "Rezoning global offshore wind energy resources," Renewable Energy, Elsevier, vol. 129(PA), pages 1-11.
    16. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Mark A. Hemer & Yalin Fan & Nobuhito Mori & Alvaro Semedo & Xiaolan L. Wang, 2013. "Projected changes in wave climate from a multi-model ensemble," Nature Climate Change, Nature, vol. 3(5), pages 471-476, May.
    18. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    19. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    20. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    21. Zheng, Chong Wei & Wang, Qing & Li, Chong Yin, 2017. "An overview of medium- to long-term predictions of global wave energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1492-1502.
    22. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    23. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).
    24. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    25. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    26. Isabelle Tobin & Robert Vautard & Irena Balog & François-Marie Bréon & Sonia Jerez & Paolo Ruti & Françoise Thais & Mathieu Vrac & Pascal Yiou, 2015. "Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections," Climatic Change, Springer, vol. 128(1), pages 99-112, January.
    27. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    28. Matthew R. Smith & Samuel S. Myers, 2018. "Impact of anthropogenic CO2 emissions on global human nutrition," Nature Climate Change, Nature, vol. 8(9), pages 834-839, September.
    29. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    30. Soares, Pedro M.M. & Lima, Daniela C.A. & Cardoso, Rita M. & Nascimento, Manuel L. & Semedo, Alvaro, 2017. "Western Iberian offshore wind resources: More or less in a global warming climate?," Applied Energy, Elsevier, vol. 203(C), pages 72-90.
    31. Lehmann, Marcus & Karimpour, Farid & Goudey, Clifford A. & Jacobson, Paul T. & Alam, Mohammad-Reza, 2017. "Ocean wave energy in the United States: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1300-1313.
    32. Rusu, Liliana, 2022. "The near future expected wave power in the coastal environment of the Iberian Peninsula," Renewable Energy, Elsevier, vol. 195(C), pages 657-669.
    33. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    34. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    35. Harshinie Karunarathna & Pravin Maduwantha & Bahareh Kamranzad & Harsha Rathnasooriya & Kasun De Silva, 2020. "Impacts of Global Climate Change on the Future Ocean Wave Power Potential: A Case Study from the Indian Ocean," Energies, MDPI, vol. 13(11), pages 1-22, June.
    36. Lira-Loarca, Andrea & Ferrari, Francesco & Mazzino, Andrea & Besio, Giovanni, 2021. "Future wind and wave energy resources and exploitability in the Mediterranean Sea by 2100," Applied Energy, Elsevier, vol. 302(C).
    37. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    38. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    39. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    40. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    41. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    42. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arguilé-Pérez, B. & Ribeiro, A.S. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2023. "Suitability of wave energy converters in northwestern Spain under the near future winter wave climate," Energy, Elsevier, vol. 278(PB).
    2. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    4. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    5. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    6. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    7. He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Vu Dinh, Quang & Doan, Quang-Van & Ngo-Duc, Thanh & Nguyen Dinh, Van & Dinh Duc, Nguyen, 2022. "Offshore wind resource in the context of global climate change over a tropical area," Applied Energy, Elsevier, vol. 308(C).
    9. Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
    10. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    11. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    13. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    14. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    15. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).
    16. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    18. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    19. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Tolga Kara & Ahmet Duran Şahin, 2023. "Implications of Climate Change on Wind Energy Potential," Sustainability, MDPI, vol. 15(20), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.