IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap1-11.html
   My bibliography  Save this article

Rezoning global offshore wind energy resources

Author

Listed:
  • Zheng, Chong-wei
  • Xiao, Zi-niu
  • Peng, Yue-hua
  • Li, Chong-yin
  • Du, Zhi-bo

Abstract

Previous researchers have made great contributions to the wind energy evaluation. However, the research into the wind energy classification has been scarce, even though this work is closely related to the rationale choice of locations for wind power plants. The traditional wind energy classification schemes consider only partial wind energy factors. Commercial development of wind energy is concerned not only with the characteristics of the wind regime itself, but also a series of factors closely related to environmental risk and cost. In this study, a new wind energy classification scheme that incorporates a comprehensive consideration of wind energy factors, environmental risk factors and cost factors is proposed to rezone the potential offshore wind energy resources worldwide. Comparison of the new and previous wind energy classification shows a good general agreement across large scale of the global oceans, whereas the wind energy of the North Pacific westerly, 30°S and 30°N waters of the global oceans may have been overestimated by the previous schemes. The new scheme highlights regional differences in wind energy classification compared with the previous schemes. By rationally adjusting the weighting coefficients, this scheme has practical value for both macro and micro-scale wind energy classifications.

Suggested Citation

  • Zheng, Chong-wei & Xiao, Zi-niu & Peng, Yue-hua & Li, Chong-yin & Du, Zhi-bo, 2018. "Rezoning global offshore wind energy resources," Renewable Energy, Elsevier, vol. 129(PA), pages 1-11.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:1-11
    DOI: 10.1016/j.renene.2018.05.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118306153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    2. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    3. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    4. Medjber, Ahmed & Guessoum, Abderrezak & Belmili, Hocine & Mellit, Adel, 2016. "New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system," Energy, Elsevier, vol. 106(C), pages 137-146.
    5. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    6. Iglesias, G. & Carballo, R., 2010. "Wave energy resource in the Estaca de Bares area (Spain)," Renewable Energy, Elsevier, vol. 35(7), pages 1574-1584.
    7. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    8. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    9. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    10. Bouman, Evert A. & Øberg, Martha M. & Hertwich, Edgar G., 2016. "Environmental impacts of balancing offshore wind power with compressed air energy storage (CAES)," Energy, Elsevier, vol. 95(C), pages 91-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    2. Dai, Juchuan & Tan, Yayi & Shen, Xiangbin, 2019. "Investigation of energy output in mountain wind farm using multiple-units SCADA data," Applied Energy, Elsevier, vol. 239(C), pages 225-238.
    3. Vinay Prasad Mandal & Raihan Ahmad & Sufia Rehman & Md Masroor & Haroon Sajjad, 2019. "Exploring optimal cereal crop sequence using cultivated land utilization index and yield in Katihar district, India: a sub division level analysis," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 9(1), pages 62-81, June.
    4. Zhang, Shijie & Wei, Jing & Chen, Xi & Zhao, Yuhao, 2020. "China in global wind power development: Role, status and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. V. Sanil Kumar & Aswathy B. Asok & Jesbin George & M. M. Amrutha, 2020. "Regional Study of Changes in Wind Power in the Indian Shelf Seas over the Last 40 Years," Energies, MDPI, vol. 13(9), pages 1-23, May.
    6. Erşen, Emre & Çelikpala, Mitat, 2019. "Turkey and the changing energy geopolitics of Eurasia," Energy Policy, Elsevier, vol. 128(C), pages 584-592.
    7. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    8. Florin Onea & Liliana Rusu, 2018. "Evaluation of Some State-Of-The-Art Wind Technologies in the Nearshore of the Black Sea," Energies, MDPI, vol. 11(9), pages 1-16, September.
    9. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
    10. Jing Xu & Ren Zhang & Yangjun Wang & Hengqian Yan & Quanhong Liu & Yutong Guo & Yongcun Ren, 2022. "A New Framework for Assessment of Offshore Wind Farm Location," Energies, MDPI, vol. 15(18), pages 1-17, September.
    11. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    12. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    13. Ali Marjan & Mahmood Shafiee, 2018. "Evaluation of Wind Resources and the Effect of Market Price Components on Wind-Farm Income: A Case Study of Ørland in Norway," Energies, MDPI, vol. 11(11), pages 1-21, October.
    14. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    15. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    16. Liang, Tao & Chai, Chunjie & Sun, Hexu & Tan, Jianxin, 2022. "Wind speed prediction based on multi-variable Capsnet-BILSTM-MOHHO for WPCCC," Energy, Elsevier, vol. 250(C).
    17. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    20. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    21. Gimeno-Frontera, Beatriz & Mainar-Toledo, María Dolores & Sáez de Guinoa, Aitana & Zambrana-Vasquez, David & Zabalza-Bribián, Ignacio, 2018. "Sustainability of non-residential buildings and relevance of main environmental impact contributors' variability. A case study of food retail stores buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 669-681.
    22. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Chong Wei & Wang, Qing & Li, Chong Yin, 2017. "An overview of medium- to long-term predictions of global wave energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1492-1502.
    2. Yong Wan & Chenqing Fan & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Xiaojun Qu, 2018. "Assessment of the Joint Development Potential of Wave and Wind Energy in the South China Sea," Energies, MDPI, vol. 11(2), pages 1-26, February.
    3. Henriques, J.C.C. & Cândido, J.J. & Pontes, M.T. & Falcão, A.F.O., 2013. "Wave energy resource assessment for a breakwater-integrated oscillating water column plant at Porto, Portugal," Energy, Elsevier, vol. 63(C), pages 52-60.
    4. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    5. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    6. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. James Allen & Konstantinos Sampanis & Jian Wan & Deborah Greaves & Jon Miles & Gregorio Iglesias, 2016. "Laboratory Tests in the Development of WaveCat," Sustainability, MDPI, vol. 8(12), pages 1-12, December.
    9. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    10. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    11. Carballo, R. & Sánchez, M. & Ramos, V. & Taveira-Pinto, F. & Iglesias, G., 2014. "A high resolution geospatial database for wave energy exploitation," Energy, Elsevier, vol. 68(C), pages 572-583.
    12. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    13. Amer Al-Hinai & Yassine Charabi & Seyed H. Aghay Kaboli, 2021. "Offshore Wind Energy Resource Assessment across the Territory of Oman: A Spatial-Temporal Data Analysis," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    14. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    15. Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
    16. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.
    17. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    18. Carlos Perez-Collazo & Deborah Greaves & Gregorio Iglesias, 2018. "A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures," Energies, MDPI, vol. 11(3), pages 1-20, March.
    19. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    20. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.