IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp276-287.html
   My bibliography  Save this article

Wind resource assessment offshore the Atlantic Iberian coast with the WRF model

Author

Listed:
  • Salvação, N.
  • Guedes Soares, C.

Abstract

A ten year wind hindcast is presented for the Iberian Peninsula coast. Simulations are conducted with the WRF model at 9 and 3 km of spatial resolution and 6 hourly output. The amount of energy that can be generated by an energy conversion device as well as the annual operating hours and capacity factors are estimated and presented as wind resource maps. The spatial variation of the error and the annual and seasonal variations of the wind energy resource are also depicted. Comparisons with observational data show the WRF model is a proficient wind generating tool, whether in coastal waters as in the open ocean, even when the model is run at a lower spatial resolution. The results show that wind farm planning offshore the Iberian coast is an eligible choice, with average annual energy density reaching up to 971 W/m2, 549 W/m2 and 398 W/m2 in the north, centre and southern regions respectively. The potential production by offshore energy conversion devices in selected sub-regions further indicates that wind farm implementation offshore the Iberian coast will produce high amounts of electricity.

Suggested Citation

  • Salvação, N. & Guedes Soares, C., 2018. "Wind resource assessment offshore the Atlantic Iberian coast with the WRF model," Energy, Elsevier, vol. 145(C), pages 276-287.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:276-287
    DOI: 10.1016/j.energy.2017.12.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, William Y.Y. & Liu, Yubao & Bourgeois, Alfred J. & Wu, Yonghui & Haupt, Sue Ellen, 2017. "Short-term wind forecast of a data assimilation/weather forecasting system with wind turbine anemometer measurement assimilation," Renewable Energy, Elsevier, vol. 107(C), pages 340-351.
    2. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    3. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    4. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    5. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    6. Mattar, Cristian & Borvarán, Dager, 2016. "Offshore wind power simulation by using WRF in the central coast of Chile," Renewable Energy, Elsevier, vol. 94(C), pages 22-31.
    7. Oh, Ki-Yong & Kim, Ji-Young & Lee, Jun-Shin & Ryu, Ki-Wahn, 2012. "Wind resource assessment around Korean Peninsula for feasibility study on 100 MW class offshore wind farm," Renewable Energy, Elsevier, vol. 42(C), pages 217-226.
    8. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    9. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    10. Ban, Marko & Perković, Luka & Duić, Neven & Penedo, Ricardo, 2013. "Estimating the spatial distribution of high altitude wind energy potential in Southeast Europe," Energy, Elsevier, vol. 57(C), pages 24-29.
    11. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    12. Giannaros, Theodore M. & Melas, Dimitrios & Ziomas, Ioannis, 2017. "Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece," Renewable Energy, Elsevier, vol. 102(PA), pages 190-198.
    13. Milanese, Marco & Tornese, Ljuba & Colangelo, Gianpiero & Laforgia, Domenico & de Risi, Arturo, 2017. "Numerical method for wind energy analysis applied to Apulia Region, Italy," Energy, Elsevier, vol. 128(C), pages 1-10.
    14. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Naidu, Natansh K. & Savsani, Vimal, 2017. "Application of reanalysis data to estimate offshore wind potential in EEZ of India based on marine ecosystem considerations," Energy, Elsevier, vol. 118(C), pages 622-631.
    15. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    16. Pacheco, A. & Gorbeña, E. & Sequeira, C. & Jerez, S., 2017. "An evaluation of offshore wind power production by floatable systems: A case study from SW Portugal," Energy, Elsevier, vol. 131(C), pages 239-250.
    17. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    18. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "Sensitivity of the WRF model wind simulation and wind energy production estimates to planetary boundary layer parameterizations for onshore and offshore areas in the Iberian Peninsula," Applied Energy, Elsevier, vol. 135(C), pages 234-246.
    19. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    20. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2016. "Ant Lion Optimization Algorithm for Renewable Distributed Generations," Energy, Elsevier, vol. 116(P1), pages 445-458.
    21. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    22. Ulazia, Alain & Saenz, Jon & Ibarra-Berastegui, Gabriel, 2016. "Sensitivity to the use of 3DVAR data assimilation in a mesoscale model for estimating offshore wind energy potential. A case study of the Iberian northern coastline," Applied Energy, Elsevier, vol. 180(C), pages 617-627.
    23. Zheng, Chong Wei & Li, Chong Yin & Pan, Jing & Liu, Ming Yang & Xia, Lin Lin, 2016. "An overview of global ocean wind energy resource evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1240-1251.
    24. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    25. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    3. Tuy, Soklin & Lee, Han Soo & Chreng, Karodine, 2022. "Integrated assessment of offshore wind power potential using Weather Research and Forecast (WRF) downscaling with Sentinel-1 satellite imagery, optimal sites, annual energy production and equivalent C," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    5. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegui, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2017. "Using 3DVAR data assimilation to measure offshore wind energy potential at different turbine heights in the West Mediterranean," Applied Energy, Elsevier, vol. 208(C), pages 1232-1245.
    6. Arun Kumar, Surisetty V.V. & Nagababu, Garlapati & Kumar, Raj, 2019. "Comparative study of offshore winds and wind energy production derived from multiple scatterometers and met buoys," Energy, Elsevier, vol. 185(C), pages 599-611.
    7. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    8. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
    9. Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
    10. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    11. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    12. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Offshore winds and wind energy production estimates derived from ASCAT, OSCAT, numerical weather prediction models and buoys – A comparative study for the Iberian Peninsula Atlantic coast," Renewable Energy, Elsevier, vol. 102(PB), pages 433-444.
    13. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    14. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    15. Yuan, Renyu & Ji, Wenju & Luo, Kun & Wang, Jianwen & Zhang, Sanxia & Wang, Qiang & Fan, Jianren & Ni, MingJiang & Cen, Kefa, 2017. "Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm," Applied Energy, Elsevier, vol. 206(C), pages 113-125.
    16. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    19. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    20. Liu, Yichao & Chen, Daoyi & Li, Sunwei & Chan, P.W., 2018. "Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling," Energy, Elsevier, vol. 160(C), pages 582-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:276-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.